• Title/Summary/Keyword: 살오징어

Search Result 83, Processing Time 0.026 seconds

Microanatomical Structure of Male Reproductive Organ in the Common Squid, Todarodes pacificus (Cephalopoda: Ommastrephidae) (살오징어 Todarodes pacificus 수컷 생식기관의 미세해부학적 구조)

  • So Ryung Shin;Jung Sick Lee
    • Journal of Marine Life Science
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • This study was performed to understand the reproductive ecology of cephalopods, described the microanatomical structure of the male reproductive organs and spermatophore in the common squid, Todarodes pacificus, a major cephalopods in Korea. The common squid was gonochorism and had sexual dimorphism, the color of the reproductive organs reflected on the mantle and the presence of the hectocotylus. Male reproductive organs were composed of testis, primary vas deferens, spermatophoric gland (seminal vesicle), spermatophoric sac (Needham's sac) and secondary vas deferens. The male has specialized reproductive organs such as the spermatophore forming organ, spermatophoric gland. Testis was histologically a seminiferous tubule type. The primary vas deferens was a thin and inverted triangular spring-like form that connected from the rear of the testis to the spermatophoric gland. Inside, it was filled with sperm of basophilic in H-E stain. The spermatophoric gland is an irregular oval connected to the primary vas deferens and spermatophoric sac, and there were a number of tubular glands. The spermatophoric sac is a tubular structure located between spermatophoric gland and secondary vas deferens, and a number of spermatophores have been identified in the lumen. The secondary vas deferens was connected to the posterior of the spermatophoric sac and had a spermatophore inside. The spermatophore was a long, transparent tube about 22 mm long, with a sperm mass inside.

Fine Structure of Retinae of Cephalopods (Todarodes pacificus And Octopus minor) Inhabiting the Korean Waters I (한국 연근해산 두족류 (Todarodes pacificus And Octopus minor) 망막 (Retina)의 미세구조 I)

  • Han, Jong-Min;Chang, Nam-Sub
    • Applied Microscopy
    • /
    • v.32 no.1
    • /
    • pp.17-30
    • /
    • 2002
  • The retinae of Todarodes pacificus and Octopus minor are divided into four layers that are an outer segment, a rod base region, an inner segment, and a plexiform layer, respectively. The retina of Octopus minor is about $20{\mu}m$ thicker ($400{\sim}420{\mu}m$) than that of Todarodes pacificus ($385{\sim}400{\mu}m$). A retina is composed of visual cells and supporting cells. The microvilli of length $0.6{\sim}0.7{\mu}m$ are packed densely on top of the supporting cells of Octopus minor while they are not found in Todarodes pacificus. The visual cells and supporting cells have pigment granules that exclude light. In case of Todarodes pacificus, the pigment granules of the visual cell are larger ($2.0{\times}0.5{\mu}m$) than those of the supporting cell ($1.0{\times}0.3{\mu}m$). But, the sizes of both cells are similar in Octopus minor. In the upper portion of a visual cell, microvilli shaped like a comb are forming a rhabdome (diameter, 60 nm) of a hexagonal structure. The rhabdome consists of 4 rhabdomere and the total area of a rhabdom of Octopus minor is larger than that of Todarodes pacificus. The synaptosome constructing a plexiform layer in Todarodes pacificus are divided into two types, each of which possess electron dense-core vesicles and electron lucent vesicles, respectively. Octopus minor also has two types of synaptosomes but each type comprises a mixture of electron dense vesicles and electron lucent vesicles, and electron lucent vesicles only, respectively, which is different from the case of Todarodes pacificus.

Changes in Cholesterol Contents of Some Marine Products during Processing (수산물의 콜레스테롤함량과 가공중의 변화)

  • KANG Jin-Hoon;CHEON Suk-Joe;LEE Hyeung-Il;LEE Yong-Woo;PARK Yeung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.4
    • /
    • pp.327-332
    • /
    • 1984
  • This experiment was carried out to investigate the changes of cholesterol contents during the processing of various marine products. For the above purpose, squid, eel, mackerel, baby clam and sea mustard were sun-dried, roasted, salted-dried, boiled-dried and salted, respectively. In raw samples, the highest content of cholesterol was 761 mg/100g in squid, following by eel, baby clam, mackerel and sea mustard in order, and there was no significant relationship between cholesterol and lipid contents. The cholesterol contents of the used samples were decreased during the processing except baby clam. The decreasing ratios of the cholesterol contents during the processing were $66.4\%$ in squid, $43.6\%$ in eel, $41\%$ in mackerel and $58\%$ in sea mustard. While the cholesterol content of baby clam was increased by 1.6 times compared with that of raw sample. Considered from the results, it seems that the changes of cholesterol content during processing depended upon the changes of lipid content in the sample.

  • PDF

Stock Identification of Todarodes pacificus in Northwest Pacific (북서태평양에 서식하는 살오징어(Todarodes pacificus) 계군 분석에 대한 고찰)

  • Kim, Jeong-Yun;Moon, Chang-Ho;Yoon, Moon-Geun;Kang, Chang-Keun;Kim, Kyung-Ryul;Na, Taehee;Choy, Eun Jung;Lee, Chung Il
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.4
    • /
    • pp.292-302
    • /
    • 2012
  • This paper reviews comparison analysis of current and latest application for stock identification methods of Todarodes pacificus, and the pros and cons of each method and consideration of how to compensate for each other. Todarodes pacificus which migrates wide areas in western North Pacific is important fishery resource ecologically and commercially. Todarodes pacificus is also considered as 'biological indicator' of ocean environmental changes. And changes in its short and long term catch and distribution area occur along with environmental changes. For example, while the catch of pollack, a cold water fish, has dramatically decreased until today after the climate regime shift in 1987/1988, the catch of Todarodes pacificus has been dramatically increased. Regarding the decrease in pollack catch, overfishing and climate changes were considered as the main causes, but there has been no definite reason until today. One of the reasons why there is no definite answer is related with no proper analysis about ecological and environmental aspects based on stock identification. Subpopulation is a group sharing the same gene pool through sexual reproduction process within limited boundaries having similar ecological characteristics. Each individual with same stock might be affected by different environment in temporal and spatial during the process of spawning, recruitment and then reproduction. Thereby, accurate stock analysis about the species can play an efficient alternative to comply with effective resource management and rapid changes. Four main stock analysis were applied to Todarodes pacificus: Morphologic Method, Ecological Method, Tagging Method, Genetic Method. Ecological method is studies for analysis of differences in spawning grounds by analysing the individual ecological change, distribution, migration status, parasitic state of parasite, kinds of parasite and parasite infection rate etc. Currently the method has been studying lively can identify the group in the similar environment. However It is difficult to know to identify the same genetic group in each other. Tagging Method is direct method. It can analyse cohort's migration, distribution and location of spawning, but it is very difficult to recapture tagged squids and hard to tag juveniles. Genetic method, which is for useful fishery resource stock analysis has provided the basic information regarding resource management study. Genetic method for stock analysis is determined according to markers' sensitivity and need to select high multiform of genetic markers. For stock identification, isozyme multiform has been used for genetic markers. Recently there is increase in use of makers with high range variability among DNA sequencing like mitochondria, microsatellite. Even the current morphologic method, tagging method and ecological method played important rolls through finding Todarodes pacificus' life cycle, migration route and changes in spawning grounds, it is still difficult to analyze the stock of Todarodes pacificus as those are distributed in difference seas. Lately, by taking advantages of each stock analysis method, more complicated method is being applied. If based on such analysis and genetic method for improvement are played, there will be much advance in management system for the resource fluctuation of Todarodes pacificus.

Immuno-Electron Microscopic Studies on the Distribution of Dopamine and $Calbindin-D_{28K}$ in the Optic lobes of Cephalopods (Todarodes pacificus and Octopus minor) inhabiting the Korean waters (한국 연근해산 두족류 (Todarodes pacificus and Octopus minor) 시엽내 Dopamine 및 $Calbindin-D_{28K}$의 분포에 관한 면역전자현미경적 연구)

  • Han, Jong-Min;Chang, Nam-Sub
    • Applied Microscopy
    • /
    • v.32 no.2
    • /
    • pp.175-183
    • /
    • 2002
  • In this study, we carried out immunostaining and immunogold labeling with rabbit anti-dopamine (TH) and rabbit anti-calbindin-$D_{28K}$ to examine the characteristics and functions of the neurons that secrete neurotransmitters in optic lobes of Todarodes pacificus and Octopus minor inhabiting the Korean waters. The obtained results are as follow. In the immunostaining with anti-dopamine, only a few of the large amacrine cells in an the upper part of an outer granule cell layer and the cells forming the islands of medulla showed positive reaction in Todarodes pacificus, while $2{\sim}3$ cells in the upper and middle parts of an outer granule cell layer and more than 5 cells in the islands of medulla reacted positively in Octopus minor. For the case of anti-calbindin case, $2{\sim}3$ small amacrine cells in the upper portion of the outer granule cell layer and $1{\sim}2$ cells which are located in the lower part of an inner granule cell layer showed positive reaction in Todarodes pacificus, while, in Octopus minor, 4 cells in the outer granule cell layer reacted positively, no immunoreactive cell being found in the inner granule cell layer. As a result of performing the immunogold labeling, relative large number ($17{\sim}26$) of gold particles were labeled per $0.5{\mu}m^2$ of the cytoplasm of the cells which showed the immunoreactivity to the anti-dopamine and anti-calbindin in Todarodes pacificus, however, small number (10) of gold particles were labeled in Octopus minor, which reach only half of the number in the Todarodes pacificus.

Morphological and Genetic Stock Identification of Todarodes pacificus in Korean Waters (한국 주변해역에 서식하는 살오징어(Todarodes pacificus)의 형태 및 유전학적 계군분석)

  • Kim, Jeong-Yun;Yoon, Moon-Geun;Moon, Chang-Ho;Kang, Chang-Keun;Choi, Kwang Ho;Lee, Chung Il
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.3
    • /
    • pp.131-141
    • /
    • 2013
  • Stock identification of Todarodes pacificus collected in the East Sea, Yellow Sea and East China Sea during the period from September to December in 2011 was analyzed by morphometric characters and mitochondrial DNA (mtDNA) cytochrome oxidase subunit I (COI) gene nucleotide variations. Frequency distributions of mantle length was analyzed by morphological method with measuring size of T. pacificus. Then each stock was estimated to confirm their maturation for mean mantle length comparing with mean mature mantle length 20-22 cm. According to morphologic stock identification, it is estimated that the northern part of East Sea is categorized as summer stock and the rest parts, including mid /southern part of the East Sea, northern part of the East China Sea and northern part of the West Sea were autumn stock. For genetic analysis, a total 49 haplotypes were defined by 33 variable nucleotide sites. From the extensive haplotype diversity, limited nucleotide diversity and star-like shape of haplotype network, T. pacificus appears to have undergone rapid population expansion from an ancestral population with a small effective population size. Although pair-wise Fst estimates which represent genetic difference among groups were low, there are relatively remarkable difference of Fst between middle and southern part of the East Sea. Although middle part of the East Sea and southern part of the East Sea were situated at the East Sea, genetically separated groups were appeared.

Infection Status of Todarodes pacificus (Mollusca: Cephalopoda) with Anisakid Larvae in the South Sea, Korea (한국 남해산 살오징어(Todarodes pacificus)의 아니사키스 유충 감염상)

  • 전계식;김세화
    • 한국해양학회지
    • /
    • v.30 no.3
    • /
    • pp.197-202
    • /
    • 1995
  • A total of 272 specimens of Todarodes pacificus purchased during the period from July 1 to August 30, 1994 in the southern sea off Pusan were examined for their infection status with larval anisakids. Larvae in squids were encapsulated and appeared to remain active. Firty five larval anisakids sorted from T. pacificus (7.72% of infection rate) were classified based on morphological and morphometric observations as follows; Anisakis type I larvae (23 larvae, 51.0%: positive rate), Contracaecum type A (9, 20.0%), Contracaecum D (4, 9.0%), Anisakis II (3, 6.7%) and unknown type (6, 13.3%).

  • PDF

Infection Status of Todarodes pacificus (Mollusca: Cephalopoda) with Anisakid Larvae in the Markets from Jumungin (주문진 어시장 살오징어(Todarodes pacificus)의 아니사키스 유충 감염상)

  • 전계식;김세화
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.1 no.1
    • /
    • pp.55-57
    • /
    • 1996
  • A total of 248 specimens of Todarodes pacificus were purchased from the Jumungin fishery market at the East Sea area two times during the period from November 1 to December 30, 1995. Samples were examined for their infection status with larvae anisakid. Anisakid larvae were collected from muscle, viscera and omentum. One hundred sixteen larval anisakids sorted from 34 specimens of T. pacificus (13.7% of infection rate) ranged from 13.5 to 29.5 mm in their body length. They were classified based on morphological and morphometric observations as follows; Anisakis type I larvae (68 larvae, 58.6%: positive rate), Contracaecum type A (5, 4.3%), Anisakis type II (17, 14.5%), Contracaecum type D (8, 7.0%) and unknown type (18, 15.5%).