• 제목/요약/키워드: 산화환원 생성물

검색결과 210건 처리시간 0.031초

LiCl 용융염 전해환원 공정 희토류원소 산화물의 화학적 거동

  • 박병흥;최인규;정명수;허진목
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2009년도 학술논문요약집
    • /
    • pp.346-346
    • /
    • 2009
  • 산화물 형태 사용후핵연료의 효율적 처분 혹은 재활용을 위한 연구 가운데, 고온의 LiCl 용융염 중에서 전해환원하여 금속으로 환원시킨 후, 환원된 금속을 고온의 LiCl-KCl 용융염에서 전해정련하는 연구가 국내외적으로 활발하게 진행되고 있다. 전해환원을 위해 일정 농도 $Li_2O$가 LiCl 용융염에 첨가되며 $Li_2O$ 농도가 높으면 반응 재질의 부식성이 크게 증가하므로 일반적으로 우라늄 산화물은 1wt% 이하의 $Li_2O$ 농도에서 전해환원 된다. 우라늄 산화물의 전해환원 전위는 $Li_2O$의 전해환원 전위 보다 표준 상태를 기준으로 공정온도인 650 $^{\circ}C$ 에서 약 70 mV 정도 낮기 때문에 전해환원 과정에서 $Li_2O$ 의 환원으로 Li 금속이 생성될 가능성이 있으며 우라늄 산화물은 대부분 직접 전해환원 되지만 일부 Li에 의해 화학적으로 환원되기도 한다. 전해환원 공정에서 환원되지 않은 희토류 산화물은 전해정련 공정에서 $UCl_3$와 반응하여 $UO_2$를 생성시켜 공정 효율을 떨어뜨린다. 따라서 전해환원 공정에서 가능하연 최대한 희토류 산화물을 금속으로 환원시키는 조건을 찾아내는 것이 바람직하고 이를 위해서 우선 전해환원 공정에서 희토류 산화물의 화학적 거동의 이해가 요구된다. 본 연구에서 열역학적 검토를 통하여 희토류 산화물의 환원 조건을 조사한 결과 희토류 산화물은 매운 낮은 $Li_2O$ 농도에서 Li에 의해 환원되고, 1wt% 이하의 $Li_2O$ 농도에서는 Sc와 Lu의 산화물이 $Li_2O$와 복합산화물을 형성하고 이들 복합산화물은 Li에 의해 환원되지 않는 것으로 나타났다. 또한 희토류 원소 별로 희토류 원소 산화물의 Li에 의한 환원 조건으로서 평형상태에서의 $Li_2O$ 농도 즉 환원 임계 $Li_2O$ 농도를 실험적으로 측정하였으며 1wt% $Li_2O$ 농도 이하에서 열역학적 해석과 동일하게 Sc와 Lu만이 복합산화물을 형성하여 Li에 의해 직접환원 되지 않는 것으로 관찰되었다.

  • PDF

전해환원 금속전환체 잔류염 제거 기초 실험

  • 박병흥;정명수;조수행;허진목
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2009년도 학술논문요약집
    • /
    • pp.296-296
    • /
    • 2009
  • 산화물 사용후핵연료를 대상으로 하는 파이로 공정은 고온 용융염 매질에서 산화물을 금속으로 전환시키는 전해환원 공정으로부터 시작된다. 이후, 전해정련 공정이 도입되어 전해환원 공정에서 금속으로 환원된 생성물을 처리하게 된다. 전기화학적 공정인 이 두 공정에는 전류전달 매질인 전해질로 용융염이 사용된다. 그러나 전해환원 공정은 LiCl 염을 기반으로 하는 반면 전해정련은 LiCl-KCl 공융염 조건에서 운전하여 두 공정의 연계성 향상 및 공정 안정성 확보를 위해서는 전해환원 공정에서 생성되는 금속전환체에 존재하는 잔류염을 제거하는 공정의 도입이 두 공정사이에 고려되고 있다. 전해환원 공정에서 산화물이 금속으로 환원되는 동안 고체입자의 외형이 유지되며 따라서 제거된 산소에 의해 금속전환체에는 공극이 발생하게 된다. 또한, 전해환원에 도입되는 산화물의 물리적 형태가 분말 또는 펠렛 등 다양한 형태로 도입 가능하여 단위 입자들 사이에 많은 공극이 발생하게 된다. 이렇게 기존재하거나 또는 공정 운전에 의해 새롭게 생성된 공극에는 전해환원 매질인 LiCl 염이 침투하여 금속전환체는 염에 의해 젖게 되며 공정 종료시 고화되어 금속전환체에 포함된다. LiCl을 제거하기 위해서는 가열에 의한 증류가 연구되고 있다. 그러나 LiCl의 낮은 증기압에 의해 비교적 낮은 온도에서 증발시키기 위해서는 감압조건이 필수적으로 고려되어야 한다. 한국원자력연구원에서는 다공성 모의 금속전환체를 사용하여 LiCl에 의한 Wetting 후 적절한 증발 조건 결정을 목적으로 온도 및 압력 조건 설정을 위한 기초실험에 결과를 수행하였다. 본 연구의 기초 실험 결과 $700^{\circ}C$온도 조건과 감압조건이 잔류염 제거를 위한 공정조건임을 밝혔다. 또한 모의 금속전환체를 담고 있는 미세 다공성 Basket은 고온조건에서 공극의 변형에 의해 증발에 대한 저항으로 작용하여 증발 효율을 저하시키는 것으로 나타났다. 따라서 잔류염 제거를 위해서는 전해환원 Basket이 비교적 큰 공극을 지녀야 할 것으로 판단된다.

  • PDF

몇 가지 치환 Thiadiazole에 대한 전기화학적 연구 (Electrochemical Studies on Some Substituted Thiadiazoles)

  • El Maghraby, A. A.;Abou-Elenien, G. M.;Abdel-Reheem, N. A.;Abdel-Tawab, H. R.
    • 대한화학회지
    • /
    • 제50권4호
    • /
    • pp.307-314
    • /
    • 2006
  • 2-Ketohydrazono-3-phenyl-5-substituted-2,3-dihydro-1,3,4-thiadiazole과 그 유도체들(1a-h)의 산화환원 특성을 백금 전극의 지지전해질로서 0.1 M tetra n-butylammonium perchlorate (TBAP)을 함유한 1,2-dichloroethane (DCE), dichloromethane (DCM), acetonitrile (AN), tetrahydrofuran (THF), and dimethylsulfoxide (DMSO)와 같은 비수용매 속에서 조사하였다. 조사한 화합물들의 산화 및 환원 생성물들을 조절전위 전해법으로 분리 확인하였으며, 산화환원 메커니즘을 제안하고 이를 증명하였다. 조사한 모든 화합물은 잘 알려진 EC 메커니즘에 이은 두 번의 비가역 일전자 과정에 의해 산화되는 반면, 환원의 경우에는 치환기의 성질에 따라, 잘 알려진 EEC 메커니즘에 이은 한번의 이전자 또는 두 번의 연속적인 일전자 과정에 의해 이루어짐을 알았다.

LiCl 용융염에서 NiO를 혼합한 희토류 산화물의 파이로 전해환원 특성 (Pyro-Electrochemical Reduction of a Mixture of Rare Earth Oxides and NiO in LiCl molten Salt)

  • 이민우;정상문
    • Korean Chemical Engineering Research
    • /
    • 제55권3호
    • /
    • pp.379-384
    • /
    • 2017
  • LiCl 용융염에서 희토류 산화물의환원율을 높이기 위해 NiO와 혼합하여 전해환원을실시하였다. Cyclic voltammetry (CV) 실험을 통해 LiCl 용융염 내에서 혼합산화물의 전기화학적 환원거동을 조사하였다. 혼합산화물로 제작된 환원전극과 그라파이트 산화전극 사이에 일정한 작동전압을 인가하여 이론전하량 대비 다양한 전하량을 공급한 후 중간생성물의 결정구조를 XRD를 이용하여 분석하였다. NiO 산화물을 첨가함으로써 전기전도성이 좋은 Ni 금속 주위로 희토류 산화물이 환원되어 RE-Ni 합금형태의 금속으로 완전히 전환되었으며, 합금을 형성하는 반응 메커니즘을 제시하였다.

니켈 기반 혼합 산화물의 수소 환원 특성: TPR 및 XRD 연구 (Hydrogen Reduction Characteristics of Ni-based Mixed Oxides: TPR and XRD Study)

  • 류재춘;차광서;이동희;이영석;박주식;김영호
    • 한국수소및신에너지학회논문집
    • /
    • 제21권2호
    • /
    • pp.89-97
    • /
    • 2010
  • $Al_2O_3$, $TiO_2$, $ZrO_2$, $Al_2O_3-TiO_2$, $Al_2O_3-ZrO_2$, 및 $TiO_2-ZrO_2$ 혼합 산화물을 지지체로 한 Ni 기반 혼합 산화물을 졸-겔법으로 제조하였다. 제조된 혼합 산화물은 1173K에서 열처리 한 후 구조적 특성 변화를 전자현미경 및 X-선 회절 분석을 이용하여 관찰하였으며, 수소를 이용한 승온 환원(TPR; temperature-programmed reduction) 실험을 통하여 1173K 까지 각 시료들의 환원 피크를 비교 고찰하였다. $Al_2O_3$ 또는 $TiO_2$ 가 혼합된 시료의 경우 1173K 에서의 열처리 후 니켈 알루미네이트 또는 니켈 티타네이트와 같은 새로운 결정상의 생성이 관찰되었으나 $ZrO_2$가 혼합된 경우에는 새로운 결정상의 생성이 관찰되지 않았다. TPR 결과에 의하면, $Al_2O_3$ 또는 $TiO_2$를 혼합된 시료의 경우 벌크 NiO의 TPR 결과와는 달리 생성된 새로운 결정상에 기인한 여러 개의 환원 피크가 나타났으나 $ZrO_2$를 혼합한 경우 벌크 NiO와 비슷한 환원 피크를 보였다. TPR 결과를 기초로 Arrhenius plot 으로부터 각 혼합 산화물들의 수소 환원 활성화 에너지를 도출하였다. $ZrO_2$를 지지체로 사용하는 경우 다른 혼합 산화물들보다 지지체로서 안정한 혼합 산화물상을 형성한다는 것을 지시하듯이 상대적으로 가장 낮은 활성화 에너지를 나타냈다.

환원성 분위기에서의 규산철의 합성에 미치는 산화 제2철의 형태학적 효과에 관한 연구 (Morphological Effect of Hematite on the Synthesis of Fayalite in Reducing Atmosphere)

  • 임응극;권명수
    • 한국세라믹학회지
    • /
    • 제12권4호
    • /
    • pp.37-42
    • /
    • 1975
  • 철(II)이온을 안정화 하기위하여, 2산화 규소와, 구상, 입방체상 및 침상의 서로 다른형태의 산화 제2철로부터 규산철을 합성하였다. 메타놀증기로 포화시킨 질소까스를 튜브로에 도입시켜 얻은 환원성 분위기속에서, 114$0^{\circ}C$에서 11$65^{\circ}C$의 온도범위에서, 가스유속을 0.13 및 0.25l/min. 로서, 환원시간 4-150분동안 교상반응을 진행하였다. 반응생성의 동태를 오르자트 가스분석으로 검토하였으며, 생성물의 확인은 X-선 회절시험 및 감량정량에 의하였으며, 결과는 다음과 같다. 1 : 1.1의 몰비로 혼합한 산화제2철과 2산화 규소의 경우, 가스유속이 0.13l/min일 때, 규산철 합성반응시간은 구상, 입방체상 및 침상산화철에 있어서 각기 8-27분, 10-16분 및 6-7분으로 구상의 경우가 범위가 가장 넓었다. 또한, 반응속도는 산화제2철의 표면적의 평방근에 비례하였고 반응시간의 평방근에 역비례하였다.

  • PDF

전기화학적 환원 분석을 통한 Sn의 산화에 대한 연구 (The Oxidation Study of Pure Tin via Electrochemical Reduction Analysis)

  • 조성일;유진;강성권
    • 마이크로전자및패키징학회지
    • /
    • 제11권3호
    • /
    • pp.55-62
    • /
    • 2004
  • 여러 가지 온도와 습도에 따라 Sn의 표면에 형성되는 산화물을 전기화학적 환원방법을 이용해 분석하였다. 전기화학적 방법을 이용하여 금속표면에 형성된 산화물을 환원시킬 때 나타나는 환원전위와 소모된 전하량을 측정하여 표면 산화물의 종류와 양을 정량적으로 분석하였다 우선 전기화학적 환원 방법이 금속 표면 산화물의 분석에 적합한지 알아보기 위해 여러 가지 산화물 분말의 환원 전위와 수소 발생 전위를 측정하였고, 분석을 위한 최적의 전류밀도 값을 구하였다. Sn 표면에 생성된 산화물을 분석한 결과 $85^{\circ}C$의 건조한 환경에서 보다 T/H (Temperature/Humidity, $85^{\circ}C$/$85\%$상대습도)조건에서 SnO가 더 빠르게 성장하였다. 또한 T/H 조건에서 하루가 지난 이후부터는 Sn의 표면 최상층에 매우 얇은 (<10 ${\AA}$) $SnO_2$ 가 형성되어 있는 것을 확인하였다. $150^{\circ}C$에서는 SnO와 $SnO_2$가 같이 존재하는 것을 확인하였다. 또한 XPS와 AES 표면분석을 통하여 환원 실험 결과를 뒷받침하였다.

  • PDF

M-ferrite를 이용한 열화학적 수소제조 (M=Co,Ni,Mn) (Thermochemical hydrogen production utilization of M-ferrite (M=Co,Ni,Mn))

  • 조미선;김우진;우성웅;박주식;강경수;최상일
    • 신재생에너지
    • /
    • 제2권2호
    • /
    • pp.69-74
    • /
    • 2006
  • 본 연구는 페라이트의 Fe 양이온 일부를 Ni, Mn, Co등으로 치환하여 M-ferrite를 제조하여 열화학적 2단계 물 분해 반응의 특성을 비교 평가하였고, XRD, SEM, GC등의 분석으로 각 금속산화물의 특성을 확인하였다. M-ferrites 는 고상법으로 제조하였다. 각각의 M-ferrite에 대한 열적환원은 1573K 에서 진행하였고 물 분해 반응은 1273K 에서 실시하였다. 이 반응에서 생성된 가스는 전량 포집하여 GC를 통해 분석하였다. 반응 전후의 시료에 대하여 SEM, XRD를 분석하여 GC결과와 함께 금속산화물의 산화환원반응 특성을 고찰하였다. 그 결과로서 물 분해 반응 후 M-ferrite (M=Co, Ni, Mn)의 생성을 XRD를 통하여 확인할 수 있었고, 물 분해 반응과의 비교결과 격자상수의 증대가 M-ferrite내의 산소의 환원에 영향을 미치는 것을 알 수 있었다. SEM결과에서는 4cycle의 물 분해 반응 후 Mn-ferrite의 심한 sintering 현상을 확인 할 수 있었다.

  • PDF

M-ferrite를 이용한 열화학적 수소제조(M=Co,Ni,Mn) (Thermochemical hydrogen production utilization of M-ferrite (M=Co,Ni,Mn))

  • 조미선;김우진;우성웅;박주식;강경수;최상일
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 춘계학술대회
    • /
    • pp.43-46
    • /
    • 2006
  • 본 연구는 페라이트의 Fe 양이온 일부를 Ni, Mn, Co등으로 치환하여 M-ferrites를 제조하여 열화학적 2단계 물 분해 반응의 특성을 비교 평가하였고, XRD, SEM, GC등의 분석으로 각 금속산화물의 특성을 확인하였다. M-ferrites는 고상법으로 제조하였다. 각각의 M-ferrites에 대한 열적환원은 1573K에서 진행하였고 물 분해 반응은 1273K에서 실시하였다. 이 반응에서 생성된 가스는 전량 포집하여 GC를 통해 분석하였다. 반응 전후의 시료에 대하여 SEM, XRD를 분석하여 GC결과와 함께 금속산화물의 산화환원반응 특성을 고찰하였다. 그 결과로서 물 분해 반응 후 M-ferrite (M=Co, Ni, Mn)의 생성을 XRD를 통하여 확인할 수 있었고, 물 분해 반응과의 비교결과 격자상수의 증대가 M-ferrite내의 산소의 환원에 영향을 미치는 것을 알 수 있었다. SEM결과에서는 4cycle의 물 분해 반응 후 Mn-ferrite의 심한 sintering 현상을 확인 할 수 있었다.

  • PDF

디젤 자동차용 LNT, SCR 촉매의 배출가스 흡착, 탈리 및 열화 특성 (Characteristics of Adsorption, Desorption of Exhaust Gases and Deactivation of LNT and SCR Catalysts for Diesel Vehicles)

  • 서충길;김화남;최병철
    • 동력기계공학회지
    • /
    • 제14권6호
    • /
    • pp.13-19
    • /
    • 2010
  • 이 논문에서는 디젤자동차용 LNT와 SCR 촉매의 NO, $NH_3$ 흡착 및 탈리의 기본 특성과 수열화 온도와 시간 및 정량화된 황피독 농도에 대한 de-$NO_x$ 촉매의 내구성을 평가하였다. LNT 촉매는 열적으로 열화됨에 따라 Pt 및 Ba의 소결 및 응집으로 활성이 떨어져 $NO_x$ 전환율은 감소하였다. 반면에 Pt의 비활성화로 중간생성물인 $NH_3$ 생성량은 증가하였으며, 이때 생성된 $NH_3$는 LNT+SCR 복합시스템의 SCR 촉매의 환원제 역할을 담당한다. 1.0 g/L 이상의 황이 피독된 LNT 촉매는 탈황을 하여도 질소 산화물 흡장물질(Ba) 의 성능이 회복이 되지 않아 $NO_x$ 전환율은 회복되지 않았으며, 탈황 후 Pt 재활성화로 인해 NO2 및 SCR 환원제인 $NH_3$ 생성량은 증가하였다. SCR 촉매의 $NO_x$ 전환율은 $700^{\circ}C$ 36h, $800^{\circ}C$ 24h로 수열화 시킨 촉매는 전이금속 입자 성장 및 zeolite 구조 파괴로 인하여 급격하게 떨어졌으며, 0.36 g/L 황 피독된 촉매는 zeolite가 가지는 강산성 특정으로 내피독성이 강하여 탈황시 $NO_x$ 전환율은 회복되었다.