• Title/Summary/Keyword: 산화적 탈수소화반응

Search Result 8, Processing Time 0.024 seconds

Oxidative Dehydrogenation of 1-butene over BiFe0.65MoP0.1 Catalyst: Effect of Phosphorous Precursors (BiFe0.65MoP0.1 촉매 상에서 1-부텐의 산화탈수소화 반응 : 인 전구체의 영향)

  • Park, Jung-Hyun;Youn, Hyun Ki;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.53 no.6
    • /
    • pp.824-830
    • /
    • 2015
  • The influence of phosphorous precursors, $NH_4H_2PO_4$, $(NH_4)_2HPO_4$, $H_3PO_4$, $(C_2H_5)_3PO_4$, and $P_2O_5$, on the catalytic performance of the $BiFe_{0.65}MoP_{0.1}$ catalysts in the oxidative dehydrogenation of 1-butene to 1,3-butadiene was studied. The catalysts were characterized by XRD, $N_2$-sorption, ICP, SEM and TPRO analyses. It was not observed big difference on the physical properties of catalysts in accordance with used different phosphorous precursors, however, the catalytic performance was largely depended on the nature of the phosphorous precursors. Of various precursors, the $BiFe_{0.65}MoP_{0.1}$ oxide catalyst, which was prepared from a phosphoric acid precursor, showed the best catalytic performance. Conversion and yield to butadiene of the catalyst showed 79.5% and 67.7%, respectively, after 14 h on stream. The cation of phosphorous precursors was speculated to affect the lattice structure of the catalysts during catalyst preparation and this difference was influenced on the re-oxidation ability of the catalysts. Based on the results of TPRO, it was proposed that the catalytic performance could be correlated with re-oxidation ability of the catalysts.

Value-added Chemicals Derived from Propane Using Heterogeneous Catalysts (불균일계 촉매를 통한 프로판 고부가화)

  • Yoon, Ji-Sun;Suh, Dong-Jin;Park, Tae-Jin;Cho, Young-Sang;Suh, Young-Woong
    • Clean Technology
    • /
    • v.14 no.2
    • /
    • pp.71-86
    • /
    • 2008
  • In this review we discussed the effective ways to catalytically derive value-added chemicals from propane which has been utilized only as an energy source so far. Among various propane-derived products, the most valuable chemicals such as propylene and acrylonitrile were mainly focused herein. Propylene could be manufactured through oxidative dehydrogenation of propane using $O_2,\;CO_2$, etc. as an oxidant for the purpose of overcoming thermodynamic limitations of propane dehydrogenation. On the other hand, propane ammoxidation would be an alternative to propylene ammoxidation for producing acrylonitrile since propane is much cheaper than propylene as a starting material. Although effective $MoVTeNbO_x$ catalysts have been developed fur propane ammoxidation in recent years, more detailed studies should be thoroughly performed. In carrying out both oxidative dehydrogenation and ammoxidation of propane fur a long period, the most critical issue is definitely considered to find out the most active and selective catalysts, which makes it possible to commercialize both reactions into economically viable processes.

  • PDF

Research Trends of Technology Using Oxygen for Dehydrogenation of Light Alkanes (경질알칸의 탈수소 반응을 위한 산소활용기술 연구 동향)

  • Koh, Hyoung Lim
    • Applied Chemistry for Engineering
    • /
    • v.27 no.2
    • /
    • pp.128-134
    • /
    • 2016
  • Due to the great development made in converting the shale gas into the more valuable products, research and commercialization for production technology of olefins like propylene, butenes, butadiene from light alkanes have been intensively investigated. Especially the technology using oxygen like oxidative dehydrogenation or selective hydrogen combustion to overcome thermodynamic limit of direct dehydrogenation conversion has been extensively studied and some cases of applying this technology to the plant scale was reported. In this review, we have categorized the technology into two parts; gas phase oxygen utilization technology and lattice oxygen utilization technology. The trends, results and future direction of the technology are discussed.

Oxidative Dehydrogenation of n-Butane over Cr Catalysts Supported on Alumina and SBA-15 (Cr이 담지 된 알루미나, SBA-15 촉매에서 n-부탄의 산화적 탈수소화 반응)

  • Shin, Jin Hyun;Shin, Jin Ho;Cho, Deug Hee;Ko, Moon Kyu
    • Korean Chemical Engineering Research
    • /
    • v.51 no.3
    • /
    • pp.364-369
    • /
    • 2013
  • Oxidative dehydrogenation of n-butane over mesoporous Cr catalysts were studied. Catalysts were prepared by Cr impregnated method over Ti or Zr dispersed mesoporous support such as SBA-15, ${\gamma}$-alumina and characterized by XRD, SEM, TEM, FT-IR UV-Vis and ICP-AES. The effect of high surface area was not noticed appreciably in terms of conversion, but for Cr catalysts with Ti and Zr-incorporated on SBA-15 and ${\gamma}$-alumina. showed high selectivity of trans-2-butene.

Oxidative Dehydrogenation of n-Butenes over BiFe0.65MoP0.1 Oxide Catalysts Prepared with Various Synthesis Method (다양한 합성 방법으로 제조된 BiFe0.65MoP0.1 산화물 촉매 상에서 n-부텐의 산화탈수소화 반응)

  • Park, Jung-Hyun;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.53 no.3
    • /
    • pp.391-396
    • /
    • 2015
  • To investigate the effect of the catalyst synthesis method on the oxidative dehydrogenation (ODH) of nbutenes, $BiFe_{0.65}MoP_{0.1}$ oxide catalysts were prepared with various synthesis methods such as co-precipitation, citric acid method, hydrothermal method, and surfactant templated method. The catalysts were characterized by X-ray Diffraction (XRD), $N_2$ sorption, and $NH_3/1$-butene-temperature programmed desorption ($NH_3/1$-butene-TPD) to correlate with catalytic activity in ODH reaction. Among the catalysts studied here, $BiFe_{0.65}MoP_{0.1}$ oxide catalyst prepared with co-precipitation method marked the highest activity showing 1-butene conversion, 79.5%, butadiene selectivity, 85.1% and yield, 67.7% after reaction for 14 h. From the result of $NH_3$-TPD, the catalytic activity is closely related to the acidity of the $BiFe_{0.65}MoP_{0.1}$-x oxide catalyst and acidity of the $BiFe_{0.65}MoP_{0.1}$ oxde catalyst prepared with co-precipitation method was higher than that of other catalysts. In addition, combined with the 1-butene TPD, the higher catalytic activity is closely related to the amount of weakly adsorbed intermediate (< $200^{\circ}C$) and the desorbing temperature of strongly adsorbed intermediates (> $200^{\circ}C$).

Investigation of Liquid Phase Formaldehyde Removal Efficiency by Enzymatic Formaldehyde Dehydrogenase and Catalytic Chemisorption Reactions (탈수소화효소 반응 및 촉매적 흡착 반응에 의한 액상 포름알데하이드의 제거 효율 연구)

  • Ham, Kyu Jin;Park, Min Seob;Choi, Kwon-Young
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.50-56
    • /
    • 2017
  • Formaldehyde is one of the toxic substances without any color and smell. Several methods to remove formaldehyde has been investigated up to now. Here, both the enzymatic and chemisorptive/catalytic liquid phase formaldehyde removal were investigated, and their catalytic activities in terms of specific activities were compared. Firstly, formaldehyde dehydrogenase (FDH) enzyme from Escherichia coli K12 was cloned, and expressed in Escherichia coli BL21(DE3). And the catalytic activity was characterized as $2.49{\times}10^3sec^{-1}mM^{-1}$ of $k_{cat}/K_m$ with 8.69 U/mg of the specific activity. Secondly, the chemisorptive and oxidative catalytic removals were investigated simultaneously. Activated carbons and zeolites treated with heat, KI, and KOH were used as chemisorption medium. And $Pd/TiO_2$ was used as an oxidative catalyst for the formaldehyde removal. All of the tested chemicals showed similar formaldehyde removal efficiencies of around 50%. However, the specific activity of FDH dependent formaldehyde removal was absolutely higher than that of using chemisorptive and catalytic removal processes with the ranges of 0.01 to 0.26 U/g.

Selective Oxidation of Amines to Imines or Nitriles by Manganese Dioxide in Air (공기 중에서 망간 다이옥사이드에 의한 아민에서 이민 또는 나이트릴로의 선택적 산화 반응)

  • Kim, Yo Han;Hwang, Seung Kyu;Lee, Yoon Sik;Kim, Jung Won
    • Applied Chemistry for Engineering
    • /
    • v.25 no.2
    • /
    • pp.215-221
    • /
    • 2014
  • A simple heterogeneous system has been developed by using base treated manganese dioxide (B-$MnO_2$) for the aerobic oxidation of amines under mild reaction conditions of 1 atm of air and $50^{\circ}C$ in hexane. This system was highly efficient to oxidize various kinds of primary or secondary amines including aliphatic, aromatic, and hetero-atomic ones under the applied reaction conditions. Amines were oxidized to nitriles or diimines by the self-condensation or oxidative dehydrogenation through imine intermediate. The B-$MnO_2$ was reused for at least 5 times without any loss of its catalytic performance and showed its cost effectiveness, easy workup, and easy separation of the products for achieving the protocol of green chemistry.

Development of GDH-glucose Sensor using Ferrate Complex (철 화합물을 이용한 당 탈수소화 효소-혈당센서의 연구)

  • Choi, Young-Bong;Lee, Jung-Min;Kim, Samantha Saeyoung;Kim, Hyug-Han
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.1
    • /
    • pp.30-36
    • /
    • 2014
  • Redox complexes to transport electrons from enzyme to electrodes are very important part in glucose sensor. Pentacyanoferrate-bound aniline ($Fe(CN)_5$-aminopyridine), was prepared as a potential redox mediator in a glucose dehydrogenase (GDH)-glucose sensor. The synthesized pyridyl-$NH_2$ to pentacyanoferrate was characterized by the electrochemical and spectroscopic methods. A amperometric enzyme-linked electrode was developed based on GDH, which catalyses the oxidation of glucose. Glucose was detected using GDH that was co-immobilized with an $Fe(CN)_5$-aminopyridine and gold nano-particles (AuNPs) on ITO electrodes. The $Fe(CN)_5$-aminopyridine and AuNPs immobilized onto ITO electrodes provided about a two times higher electrochemical response compared to that of a bare ITO electrode. As glucose was catalyzed by wired GDH, the electrical signal was monitored at 0.4 V versus Ag/AgCl by cyclic voltammetry. The anode currents was linearly increased in proportion to the glucose concentration over the 0~10 mM range.