• Title/Summary/Keyword: 산화저코니움

Search Result 2, Processing Time 0.016 seconds

Synthesis and Crystal Structure of Yttria-Stabilized Zirconia (이트리아를 첨가한 저코니아의 합성과 결정구조)

  • Kim, Won-Sa;Suh, Il-Hwan;Bak, Ro-Hak;Kim, Moon-Jib;Kim, Huhn-Jun;Lee, Chang-Hee;Kim, Yong-Che;Seong, Baek-Seok;Lee, Jeong-Soo;Shim, Hae-Seop;Kim, Yi-Kyung;Lee, Jin-Ho
    • Journal of the Korean earth science society
    • /
    • v.18 no.6
    • /
    • pp.553-558
    • /
    • 1997
  • Colorless and transparent cubic zirconia($Zr_{0.73}Y_{0.27}O_{1.87}$) crystal has been synthesized by the Bridgman-Stock-bager method(also called Skull melting method). $Y_2O_3$ is used as stabilizer. The crystal shows a vitreous luster with a slight oily appearance. Under a polarizing microscope, it shows isotropic nature with no appreciable anisotropism. Mohs hardness value is measured to be $8{\sim}8\frac{1}{2}$ and specific gravity 5.85. Under ultraviolet light it shows a faint white glow. The crystal structure of yttria stabilized zirconia was determined, using single crystal X-ray diffraction techniques to be a cubic symmetry, space group $Fm\overline{3}m({O^5}_h)$ with $a=5.1552(5){\AA}$, $V=136.99(5){\AA}^3$, Z=4, and R=0.0488 for 29 unique reflections. Each zirconium atom is at the center of eight oxygen atoms situated at the corners of a surrounding cube and each oxygen atom is at the center of a tetrahedron of zirconium atoms. So a coordination of 8:4 holds in the structure.

  • PDF

Optimum Conditions for Growing Gem-quality Colorless Cubic Zirconia (보석용 무색 큐빅 저코니아의 최적 육성 조건)

  • 김원사;유영문;신현숙
    • Journal of the Mineralogical Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.99-110
    • /
    • 2001
  • A gem-quality yttria-stabilized zirconium oxide crystals were synthesized by the skull-melting method, using the RF electrical apparatus. Principal raw materials used were $ZrO_2$and 25 wt.% $Y_2O_3$as stabilizer and 0.03~0.05 wt.% $Nd_2O_3$decolorizing agent were added to it. The single crystals were approximately 20$\times$63 mm in size with chemical composition $Zr_{0.73}$ $Y_{0.27}$ $O_{1.87}$ . The crystals are isotropic with no appreciable anisotropism under a polarizing microscope. Their refractive indices are in the range of 2.15~2.18, specific gravity 5.85, Mohs' hardness 8~8.5, and reflectivity 13.47%. The zirconia crystals were confirmed to have cubic structure with Face-centered lattice(Z=4), space group Fm3m ($CaF_2$-type structure) and unit cell parameters are a=5.157 $\AA$. The optimal growing conditions for yttria-stabilized zirconia are 50 kW, 2.94 MHz in power and to use a crucible with 105 mm $\times$ 135 mm in size. When the lowering speed of the crucible was set 16mm/hr gave the best yield, 42%. Since the refractive index(2.15~2.18) of cubic zirconia is smaller than that of diamond, the angle between crown and pavilion should be fashioned to make it smaller than $40.5^{\circ}$ to show the maximum brilliancy and fire.

  • PDF