• Title/Summary/Keyword: 산화루테늄

Search Result 44, Processing Time 0.027 seconds

Synthesis and Characterization of a Series of PtRu/C Catalysts for the Electrooxidation of CO (일산화탄소 산화를 위한 PtRu/C 시리즈 촉매의 합성 및 특성 연구)

  • Lee, Seonhwa;Choi, Sung Mook;Kim, Won Bae
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.432-439
    • /
    • 2012
  • The electrocatalytic oxidation of CO was studied using carbon-supported 20 wt% PtRu (PtRu/C) catalysts, which were prepared with different Pt : Ru atomic ratios from 7 : 3 to 3 : 7 using a colloidal method combined with a freeze-drying procedure. The bimetallic PtRu/C catalysts were characterized by various physicochemical analyses, including X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). CO stripping voltammetry measurements indicated that the addition of Ru with a Pt catalyst significantly improved the electrocatalytic activity for CO electrooxidation. Among the tested catalysts, the $Pt_5Ru_5/C$ catalyst had the lowest onset potential (vs.Ag/AgCl) and the largest CO EAS. Structural modification via lattice parameter change and electronic modification in the unfilled d band states for Pt atoms may facilitate the electrooxidation of CO.

The Change in Interfacial and Mechanical Properties for Glass Fiber/p-DCPD Composites with Degree of Ruthenium Catalyst Activation (루테늄촉매 활성정도에 따른 유리섬유/폴리다이사이클로펜타다이엔 복합재료의 기계 및 계면물성 변화)

  • Shin, Pyeong-Su;Kim, Jong-Hyun;Baek, Yeong-Min;Park, Ha-Seung;Kwon, Dong-Jun;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.19 no.1
    • /
    • pp.13-18
    • /
    • 2018
  • At ruthenium (Ru) catalyst was exposed from the atmosphere, the degree of catalyst activation decreased. The change of catalyst activity with the number of days of exposure to air for the Ru catalyst was confirmed using the surface tension method quantitatively. Mechanical properties and surfactant change after polymerization by DCPD using Ru catalyst for each air exposure day was evaluated. The Ru catalyst mixed with a dilution agent was exposed in the air and color was monitored for each day. Surface tension was measured using Wilhelmy and PTFE and associated with different catalyst activities. Heat was measured in real time during polymerizing DCPD with Ru catalyst. After polymerization, tensile strength was measured for p-DCPD and the change of material property was measured. Interfacial properties were also evaluated via microdroplet pull-out tests between glass fiber and p-DCPD. The surface tension was stable until the 4 days (33 dyne/cm) whereas the surface energy increased at the 10 days (34 dyne/cm), which could be correlated with oxidation of the catalyst. Tensile property and interfacial shear strength (IFSS) was also stable until the 4 days (tensile strength: 38 MPa and IFSS: 26 MPa) whereas the mechanical property decrease at 10 days (tensile strength: 15 MPa and IFSS: 3 MPa) dramatically.

Development of Ruthenium/TEMPO/Nitrate Catalyst System for Efficient Oxidation of Isosorbide (아이소소바이드의 효과적 산화반응을 위한 루테늄/템포/나이트레이트 촉매 시스템 개발)

  • Irshad, Mobina;Yu, Jung-Ah;Oh, Youngtak;Kim, Jung Won
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.103-108
    • /
    • 2022
  • This research work reports the development of a Ruthenium/2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO)/nitrate catalyst system for the highly selective transformation of isosorbide (1,4:3,6-dianhydro-D-glucitol) to isosorbide-diketone (2,6-dioxabicyclo (3,3,0)octan-4,8-one). Isosorbide is a critical platform molecule for future manufacturing processes. TEMPO has been utilized to convert alcohols to carbonyl compounds for a long time. The optimal chemical reaction condition was found to be when using isosorbide (0.5 mmol) with supported Ru (10 mol%), TEMPO (5 mol%), and sodium nitrate (0.03 mmol) in the presence of acetic acid (3 ml) as a solvent at 50 ℃ and 1 atm oxygen pressure. This catalyst system demonstrated good selectivity (> 97%) and yield (87%) with respect to the desired product, in addition to a putative catalytic double oxidation mechanism.

Optical Hydrogen Sensor Based on Gasochromic $RuO_2{\cdot}xH_2O$ Thin Film ($RuO_2{\cdot}xH_2O$ 박막의 가스채색 현상을 이용한 수소검지 광센서)

  • Cheong, Hyeon-Sik;Jo, Hyun-Chol;Kim, Kyung-Moon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.1
    • /
    • pp.9-16
    • /
    • 2005
  • We studied the electrochromic properties of hydrated amorphous ruthenium oxide ($RuO_2{\cdot}xH_2O$) thin films using in-situ Raman spectroscopy during electrochemical charging/discharging cycles. We have found that the principal effect of hydrogen insertion into $RuO_2{\cdot}xH_2O$ is reduction of $Ru^{4+}\;to\;Ru^{3+}$, and not formation of new bonds involving hydrogen. We compared the changes in the Raman spectrum of a gasochromic $Pd/RuO_2{\cdot}xH_2O$ film as it is exposed to hydrogen gas with that of electrochemical hydrogen insertion. We tested the changes in the optical transmission of the $Pd/RuO_2{\cdot}xH_2O$ film when exposed to hydrogen gas.

Studies on the anodic oxidation of some volatile organic halogen compounds(THM) (휘발성 할로겐 화합물(THM)의 양극 산화에 관한 연구)

  • Yoo, K.S.;Park, S.Y.;Yang, S.B.;Woo, S.B.
    • Analytical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.264-273
    • /
    • 1997
  • Anodic oxidation reaction was applied to remove trihalomethanes in an aqueous solution. Each component was determined by using solid phase microextraction(SPME) fiber and GC-ECD. Anodic and cathodic compartments were separated in order to protect contaminants and connected by $KNO_3$-agar bridge. The calibration graphs of the 6 THM components were shown good linearlity from a few ppb up to a few hundreds ppb concentration level. Anodes such as platinum(Pt), titanium(Ti). zircornium(Zr), titanium metal coated with iridium(Ti-Ir), and glassy carbon coated with mixed valence ruthenium(mv Ru) were tried to remove the THMs at different potentials. The best result was obtained on the Ti-Ir anode applied 9 volts DC. The electrode could effectively remove almost all the THM components from the stirring solution within about 1.5 hours. The glassy carbon electrode coated with mixed valence ruthenium showed excellent removing effect at the begining, but the maximum removing level was remained at 60% probably due to the destruction of the electrode surface. The concentration of chloroform, however, tends to be increased due to the electrode reaction producing the component at the condition.

  • PDF

Development of templated RuO2 nanorod and nanosheet electrodes to improve the electrocatalytic activities for chlorine evolution (전기적 염소 발생 촉매활성을 위한 성형된 루테늄 산화물 나노로드와 나노시트 전극의 개발)

  • Luu, Tran Le;Kim, Choonsoo;Yoon, Jeyong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.5
    • /
    • pp.373-381
    • /
    • 2017
  • $RuO_2$ is a common active component of Dimensionally Stable Anodes (DSAs) for chlorine evolution that can be used in wastewater treatment systems. The recent improvement of chlorine evolution using nanostructures of $RuO_2$ electrodes to increase the treatment efficiency and reduce the energy consumption of this process has received much attention. In this study, $RuO_2$ nanorod and nanosheet electrodes were simply fabricated using the sol-gel method with organic surfactants as the templates. The obtained $RuO_2$ nanorod and nanosheet electrodes exhibit enhanced electrocatalytic activities for chlorine evolution possibly due to the active surface areas, especially the outer active surface areas, which are attributed to the increase in mass transfers compared with a conventional nanograin electrode. The electrocatalytic activities for chlorine evolution were increased up to 20 % in the case of the nanorod electrode and 35% in the case of the nanosheet electrode compared with the nanograin electrode. The $RuO_2$ nanorod 80 nm in length and 20-30 nm in width and the $RuO_2$ nanosheet 40-60 nm in length and 40 nm in width are formed on the surface of Ti substrates. These results support that the templated $RuO_2$ nanorod and nanosheet electrodes are promising anode materials for chlorine evolution in future applications.

Synthesis of RuO2/h-Co3O4 Electrocatalysts Derived from Hollow ZIF and Their Applications for Oxygen Evolution Reaction (중공 ZIF를 이용한 RuO2/h-Co3O4 촉매의 합성 및 산소 발생 반응으로의 활용)

  • Yoonmo Koo;Youngbin Lee;Kyungmin Im;Jinsoo Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.180-185
    • /
    • 2023
  • To improve the efficiency of water electrolysis, it is essential to develop an oxygen evolution reaction (OER) electrocatalyst with high performance and long-term stability, accelerating the reaction rate of OER. In this study, a hollow metal-organic framework (MOF)-derived ruthenium-cobalt oxide catalyst was developed to synthesize an efficient OER electrocatalyst. As the synthesized catalyst increases the surface exposure of ruthenium, a low overpotential (386 mV) was observed at a current density of 10 mA/cm2 with a low Tafel slope. It is expected to be able to replace noble metal catalysts by showing higher mass activity and stability than commercial RuO2 catalysts.

Study on the Excessive Current Noise in $RuO_2$ Thick Film Resistors (산화루테늄계 후막 저항기의 과도한 전류잡음에 관한 고찰)

  • 김지호;김진용;임한조;신철재;박홍이
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.3
    • /
    • pp.79-86
    • /
    • 1992
  • The cause of excess current noise which appears some times in RuO$_2$ thick film chip resistors and the process to reduce such noise are investigated. We observed that too large thermal expansion coefficients of resistor paste and electrode metal paste can induce the mechanical stress and microcracks in the contact region of the two sintered materials. Such microcracks result in the reduction of conduction paths in the sintered electrode and this provokes the increase of the resistance value and the current noise. Such excessive current noise induced by microcracks could be reduced or even eliminated by using an enlarged overcoat patterns in the plating process or by adding an additional annealing process before plating.

  • PDF

Preparation of Uniform Porous Carbon from Mesophase Pitch and Its Characteristics of Catalyst Support for the Direct Methanol Fuel Cell (메조페이스 핏치로부터 균질한 다공성 탄소 제조 및 이를 이용한 직접 메탄올 연료전지의 촉매 담지체 특성)

  • Nam, Ki-Don;Kim, Tae-Jin;Kim, Sang-Kyung;Lee, Byoung-Rok;Peck, Dong-Hyun;Ryu, Seung-Kon;Jung, Doo-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.17 no.2
    • /
    • pp.223-228
    • /
    • 2006
  • Pore-size controlled porous carbons for the catalyst supports of the direct methanol fuel cell were prepared from the mesophase pitch by using the silica spheres with different sizes. Pitch solution in THF and spheres were mixed, carbonized and etched by 5 M NaOH to make porous carbon. Specific surface area of the porous carbons was $14.7{\sim}87.7m^2/g$ and average pore diameter was 50~550 nm which were dependent on the size of silica spheres. Aqueous reduction method was used to load 60 wt% PtRu on the prepared porous carbon supports. The electro-oxidation activity of the supported 60 wt% Pt-Ru catalysts was measured by cyclic voltammetry and unit cell test. For the 60 wt% Pt-Ru/porous carbon synthesized by 50 nm silica, current density value in the cyclic voltammetry test was $123mA/cm^2$ at 0.4 V and peak power density in the unit cell test were 105 and $162mW/cm^2$ under oxygen at 60 and $80^{\circ}C$, respectively.

Ruthenium Complex Catalyzed Reaction of Diols or Triol with Amines (루테늄 착물 촉매를 이용한 디올 및 트리올과 아민과의 반응)

  • Sang Chul Shim;Young Zoo Youn;Jae Wook Lee;Dong Yeob Lee;Jae Goo Shim;Ju Hee Kim;Keun Tae Huh
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.11
    • /
    • pp.967-973
    • /
    • 1993
  • ${\alpha},{\omega}$-Diols such as 1,6-hexanediol and 1,7-heptanediol react with secondary amines in the presence of catalytic amount of ruthenium complex at 180$^{\circ}$C for 24 hrs to give the corresponding diamino compounds in good yields. The yield of diamino compound was affected by the molar ratio of ${\alpha},{\omega}$-diol to secondary amine. The reaction was also affected by the nature of the phosphorus ligands employed. On the other hand, aromatic primary amines react with 1,2,6-hexanetriol in the presence of RuCl_3{\cdot}H_2O-3PPh_3$ at 180$^{\circ}$C for 3 hours under argon atmosphere to give selectively 1-substituted aryl-3-hydroxyperhydroazepines in good yields. Selective synthesis of these products show that two primary hydroxy groups (1,6-positions) oxidize predominantly than secondary hydroxy group (2-position) by ruthenium-phosphorus complex. The yields were decreased according to the order of para-, meta- and ortho-substituent.

  • PDF