• Title/Summary/Keyword: 산업용 바닥

Search Result 23, Processing Time 0.021 seconds

Comparative analysis of status of safety accidents and importance-performance analysis (IPA) about precautions of safety accidents by employment type of industry foodservices in Jeonbuk area (전북지역 산업체급식소 조리종사자의 고용형태에 따른 안전사고 실태 및 안전사고 예방관리에 대한 중요도와 수행도 분석)

  • So, Hee;Rho, Jeong Ok
    • Journal of Nutrition and Health
    • /
    • v.50 no.4
    • /
    • pp.402-414
    • /
    • 2017
  • Purpose: The purpose of the study was to evaluate the status of safety accidents and importance-performance analysis (IPA) between regular and non-regular employees in industry foodservices. Methods: The participants were regular employees (n = 119) and non-regular employees (n = 163) in industry foodservices in the Jeonbuk area. Demographic characteristics, status of safety accidents, safety education, and importance and performance status were assessed using a self-administered questionnaire. Results: Approximately 66.4% of regular employees and 53.4% of non-regular employees experienced safety accidents (p < 0.05). Types of safety accidents of regular and non-regular employees were mostly burns, and causes were mostly from their own negligence. Approximately 98.3% of regular employees and 95.1% of non-regular employees experienced safety education. Approximately 88.9% of regular employees and 96.8% of non-regular employees received safety education from dietitians. Approximately 41.9% of regular employees and 50.0% of non-regular employees had difficulty applying the contents of safety education due to lack of time during work. As a result of IPA, regular and non-regular employees were aware of the importance of the following and performed them well: 'Clean the floor of the work place', 'Arrange in the work area', 'Wear safety shoes', 'Check for heater cord', and 'Safety cooking when using oil'. On the other hand, they were not aware of the importance of the following and performed them insufficiently: 'Check for the MSDS', 'Aware of chemical signs', 'Wear protection gloves etc.', 'Do stretching exercise', and 'Using ancillary tools'. Conclusion: Therefore, it is necessary to improve the consciousness of dietitians for effective application of safety education contents, development of contents, especially MSDS, and related things.

The Literary Investigation On Types and Cooking Method of Bap (Boiled Rice) During Joseon Dynasty($1400's{\sim}1900's$) (조선시대 밥류의 종류와 조리방법에 대한 문헌적 고찰(1400년대${\sim}1900$년대까지))

  • Bok, Hye-Ja
    • Journal of the Korean Society of Food Culture
    • /
    • v.22 no.6
    • /
    • pp.721-741
    • /
    • 2007
  • 1. For the types of boiled rice, there were 1 type of bap, 1 type of jebap cooked with glutinous rice, 13 types of boiled rice cooked by mixing grains and nuts such as daemakban, somakban, jobap, cheongryangmiban, jobap, gijangbap, yulmubap, hyeonmibap, boribap and patmulbap as well as patbap, congbap, byeolbap and bambap etc as ogokbap. Also, there were 12 types of bap cooked by mixing herb medicinal ingredients such as cheongjeong, oban, boksungabap, gumeunsaekbap, hwanggukgamchobap, yeongeunbap, okjeongbap, gogumabap, dububap, samssibap, dorajibap, gamjabap, songibap and jukshilbap. There were 7 types bap cooked as unique one bowl dish at the present as bapby mixing fish, meat, shellfish and milk as ingredients are hwangtang, gyejanggukbap, janggukbap, gulbap, kimchibap, chusaban and bibimbap, etc and the types of bap that have been analyzed are 34 total. 2. For the food ingredients used in bap types 23 types of miscellaneous grains, 5 types of nuts and 11 types of meat, 6 types of fish, 35 types of vegetables, 2 types of fruit including pears or peaches were used. Garlic wasn't used perhaps because of it being boiled rice 3. Types of Sap by Cooking Methods. (1) The ssalbap was cooked by first boiling water, putting in rice grains and boiling hard to be cooked as overcooked bap (rice). (2) The japgokbap (boiled cereals) has used buckwheat, barley job's tear, etc to be boiled down by soaking the ones with large grains (beans) first in advance to be boiled down or cooked by crushing into fine pieces. The red bean, etc was boiled down in advance or placed at the bottom of pot by cutting into two pieces while jujube or nut was cut into three pieces to cook the bap by pouring a lot of water and mixing other ingredients. (3) The gukbap (soup boiled rice), etc were cooked by squeezing out the yellow chrysanthemum that has dried chrysanthemum to cook the boiled rice by putting in rice and gukbap, meat or bones, etc were boiled down for a long time and decorated with meat or wild greens by mixing the bap in the meat juice. For gulbap (oyster boiled rice), etc, it was cooked as ingredients were stir fried in advance or washed and put in when the bap was about half cooked. (4) For bibimbap (mixed boiled rice), after the bap was overcooked first with rice, the wild greens were mixed lightly with bap beforehand, then the wild greens, decorations and garnishings were laid above rice and red pepper powder was sprinkled. (5) Namchok leaves, etc were boiled to cook the boiled rice with rice after being cooled while namchok stem and leaves were pounded to make juice and cooked the bap with rice. The peach, lotus root and yams were cut into fine pieces to be put in together when rice was about half done. The bellflower was soaked in water to be boiled down for a long time while potatoes and pine mushrooms, etc were cut into fine pieces to cook the bap (boiled rice) with rice.

Analysis of Greenhouse Thermal Environment by Model Simulation (시뮬레이션 모형에 의한 온실의 열환경 분석)

  • 서원명;윤용철
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.215-235
    • /
    • 1996
  • The thermal analysis by mathematical model simulation makes it possible to reasonably predict heating and/or cooling requirements of certain greenhouses located under various geographical and climatic environment. It is another advantages of model simulation technique to be able to make it possible to select appropriate heating system, to set up energy utilization strategy, to schedule seasonal crop pattern, as well as to determine new greenhouse ranges. In this study, the control pattern for greenhouse microclimate is categorized as cooling and heating. Dynamic model was adopted to simulate heating requirements and/or energy conservation effectiveness such as energy saving by night-time thermal curtain, estimation of Heating Degree-Hours(HDH), long time prediction of greenhouse thermal behavior, etc. On the other hand, the cooling effects of ventilation, shading, and pad ||||&|||| fan system were partly analyzed by static model. By the experimental work with small size model greenhouse of 1.2m$\times$2.4m, it was found that cooling the greenhouse by spraying cold water directly on greenhouse cover surface or by recirculating cold water through heat exchangers would be effective in greenhouse summer cooling. The mathematical model developed for greenhouse model simulation is highly applicable because it can reflects various climatic factors like temperature, humidity, beam and diffuse solar radiation, wind velocity, etc. This model was closely verified by various weather data obtained through long period greenhouse experiment. Most of the materials relating with greenhouse heating or cooling components were obtained from model greenhouse simulated mathematically by using typical year(1987) data of Jinju Gyeongnam. But some of the materials relating with greenhouse cooling was obtained by performing model experiments which include analyzing cooling effect of water sprayed directly on greenhouse roof surface. The results are summarized as follows : 1. The heating requirements of model greenhouse were highly related with the minimum temperature set for given greenhouse. The setting temperature at night-time is much more influential on heating energy requirement than that at day-time. Therefore It is highly recommended that night- time setting temperature should be carefully determined and controlled. 2. The HDH data obtained by conventional method were estimated on the basis of considerably long term average weather temperature together with the standard base temperature(usually 18.3$^{\circ}C$). This kind of data can merely be used as a relative comparison criteria about heating load, but is not applicable in the calculation of greenhouse heating requirements because of the limited consideration of climatic factors and inappropriate base temperature. By comparing the HDM data with the results of simulation, it is found that the heating system design by HDH data will probably overshoot the actual heating requirement. 3. The energy saving effect of night-time thermal curtain as well as estimated heating requirement is found to be sensitively related with weather condition: Thermal curtain adopted for simulation showed high effectiveness in energy saving which amounts to more than 50% of annual heating requirement. 4. The ventilation performances doting warm seasons are mainly influenced by air exchange rate even though there are some variations depending on greenhouse structural difference, weather and cropping conditions. For air exchanges above 1 volume per minute, the reduction rate of temperature rise on both types of considered greenhouse becomes modest with the additional increase of ventilation capacity. Therefore the desirable ventilation capacity is assumed to be 1 air change per minute, which is the recommended ventilation rate in common greenhouse. 5. In glass covered greenhouse with full production, under clear weather of 50% RH, and continuous 1 air change per minute, the temperature drop in 50% shaded greenhouse and pad & fan systemed greenhouse is 2.6$^{\circ}C$ and.6.1$^{\circ}C$ respectively. The temperature in control greenhouse under continuous air change at this time was 36.6$^{\circ}C$ which was 5.3$^{\circ}C$ above ambient temperature. As a result the greenhouse temperature can be maintained 3$^{\circ}C$ below ambient temperature. But when RH is 80%, it was impossible to drop greenhouse temperature below ambient temperature because possible temperature reduction by pad ||||&|||| fan system at this time is not more than 2.4$^{\circ}C$. 6. During 3 months of hot summer season if the greenhouse is assumed to be cooled only when greenhouse temperature rise above 27$^{\circ}C$, the relationship between RH of ambient air and greenhouse temperature drop($\Delta$T) was formulated as follows : $\Delta$T= -0.077RH+7.7 7. Time dependent cooling effects performed by operation of each or combination of ventilation, 50% shading, pad & fan of 80% efficiency, were continuously predicted for one typical summer day long. When the greenhouse was cooled only by 1 air change per minute, greenhouse air temperature was 5$^{\circ}C$ above outdoor temperature. Either method alone can not drop greenhouse air temperature below outdoor temperature even under the fully cropped situations. But when both systems were operated together, greenhouse air temperature can be controlled to about 2.0-2.3$^{\circ}C$ below ambient temperature. 8. When the cool water of 6.5-8.5$^{\circ}C$ was sprayed on greenhouse roof surface with the water flow rate of 1.3 liter/min per unit greenhouse floor area, greenhouse air temperature could be dropped down to 16.5-18.$0^{\circ}C$, whlch is about 1$0^{\circ}C$ below the ambient temperature of 26.5-28.$0^{\circ}C$ at that time. The most important thing in cooling greenhouse air effectively with water spray may be obtaining plenty of cool water source like ground water itself or cold water produced by heat-pump. Future work is focused on not only analyzing the feasibility of heat pump operation but also finding the relationships between greenhouse air temperature(T$_{g}$ ), spraying water temperature(T$_{w}$ ), water flow rate(Q), and ambient temperature(T$_{o}$).

  • PDF