• Title/Summary/Keyword: 산업순환

Search Result 708, Processing Time 0.022 seconds

Properties of Engineering and Durability Concrete with Fly-ash and Blast Furnace Slag in Normal Strength Level (플라이애시 및 고로슬래그 첨가율에 따른 일반강도영역 콘크리트의 공학적 특성 및 내구성)

  • Kim, Gyu-Yong;Shin, Kyoung-Su;Lim, Chang-Hyuk;Nam, Jeong-Soo;Kim, Moo-Han
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.103-110
    • /
    • 2010
  • Recently, reducing usage of cement and using by-product of industry such as blast furnace slag and fly-ash have been increased to reduce $CO_2$ gas emission. That apply to construction. As a result, reduction of environmental stress and recycling of resources are expected. In this study, as basic study to the reuse of resources and reduce Environmental Load, comparing and analyzing hardening characteristics and durability as using the blast furnace slag and fly-ash, examining concrete characteristics substituted the three elements for the blast furnace slag and fly-ash and evaluating the relationship as binder. Through this, it want to provide the basic data for mass utilization. Blast furnace slag powder and replaced at fly-ash compressive strength of concrete in the strength of the initial seven days material age lower level of expression significantly compared to the concrete, but, 28 days after the similar or higher compressive strength than the concrete expression of the was. In addition, the reserves replacement of blast furnace slag powder salt injury increasing resistance are seen improvements, according to the conventional blast furnace slag powder study by the chloride ions on the surface of the concrete are improved being fixation salt injury resistance is considered.

  • PDF

Simulation of a Double Effect Double Stage Absorption Heat Pump for Usage of a Low Temperature Waste Heat (저온 폐열 활용을 위한 2중 효용 2단 흡수식 히트펌프 시뮬레이션)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7736-7744
    • /
    • 2015
  • Considering the significant waste of industrial energy, effective use of low temperature waste heat is extremely important. In this study, a heat pump cycle with double effect and double stage was realized, which escalates the hot water temperature from $50^{\circ}C$ to $70^{\circ}C$ using $160^{\circ}C$ high temperature heat source and $17^{\circ}C$ low temperature heat source. The steam generated in the first generator condenses in the first condenser generating steam in the second generator. The steam condenses in the second condenser and is provided to the second evaporator. Part of the water out of the second evaporator is supplied to the first evaporator, which evaporates using low temperature waste heat. The evaporated steam enters the first absorber and the second evaporator. The steam out of the second evaporator is absorbed into the solution at the second absorber. The hot water temperature is raised in the second condenser and in the second absorber. Proper flow rates and UA values, which satisfied temperature lift $20^{\circ}C$ and COP 1.6, were deduced through trior and error. The COP increases as the temperature of the high temperature water increases, hot water temperature decreases and flow rate increases, waste water temperature and flow rate increases, solution circulation rate decreases. On the other hand, the temperature rise of the hot water increases as the temperature of the high temperature water increases, hot water temperature increases and flow rate decreases, waste water temperature and flow rate increases, solution circulation rate increases. In addition, the COP and hot water temperature rise increase as UAs of the heat exchangers increase.

Leaching of Copper and Other Metal Impurities from a Si-Sludge Using Waste Copper Nitrate Solution (실리콘 슬러지로부터 폐질산구리용액을 이용한 구리 및 금속불순물의 침출)

  • Jun, Minji;Srivastava, Rajiv Ranjan;Lee, Jae-chun;Jeong, Jinki
    • Resources Recycling
    • /
    • v.25 no.3
    • /
    • pp.11-19
    • /
    • 2016
  • A fundamental study to recycle a Si-Sludge and waste copper nitrate solution acid solution generated by domestic electronic industries was carried out. The waste copper nitrate solution was used as the lixiviant to leach the metals like Cu, Ca, Fe, etc. from the sludge leaving Si in the residues. The effect of reaction temperature, time and pup density on the metals leaching from the sludge was investigated. To enhance the extractability of Fe, the effect of HCl, $HNO_3$ and $H_2O_2$ introduced additionally during the leaching was also examined. Considering the leaching efficiency of Fe along with Cu, the leaching conditions comprising of 200 ~ 225 g/L pulp density and $90^{\circ}C$ temperature for 30 min were optimized. Under this condition, 98.27 ~ 99.17% Cu could be dissolved in the leach liquor with the obtained purity of Si in the residues as 98.69 ~ 98.86 %. The study revealed that the leaching of Cu contained in the Si-Sludge with the waste copper nitrate solution is a plausible approach by which the obtained leach liquor can further be treated suitably to recover Cu as the high pure value-added products.

Durability Characteristics of Ternary Cement Matrix Using Ferronickel Slag According to the Alkali-Activators (알칼리 활성화제 종류별 페로니켈슬래그를 사용한 3성분계 시멘트 경화체의 내구특성)

  • Cho, Won-Jung;Park, Eon-Sang;Jung, Ho-Seop;Ann, Ki-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.2
    • /
    • pp.190-197
    • /
    • 2020
  • This paper evaluates the mechanical properties and durability of cement matrix blended with mineral admixtures and ferronickel slag(FNS) powder which is an industrial b y-product during ferronickel smelting process. The hydration heat, pore structure, compressive strength, length change, rapid chloride penetration test(RCPT), and freezing and thawing resistance of ternary blended cement matrix were investigated and compared with ordinary portland cement matrix. The result showed that the compressive strength of ternary blended cement matrix using ferronickel slag powder and mineral mixture was low in strength compared to the reference concrete, but recovered to a certain extent by using alkali activator. Length change of cement mortar using FNS powder have shown less shrinkage occurs than the reference specimen. In addition, irrespective of using the alkali-activators, all ternary mix are indicative of the 'very low' range for chloride ion penetrability according to the ASTM C 1202, and the freeze-thaw resistance also showed excellent results.

On the Change of Flood and Drought Occurrence Frequency due to Global Warming : 1. Change of Daily Rainfall Depth Distribution due to Different Monthly/Yearly Rainfall Depth (지구온난화에 따른 홍수 및 가뭄 발생빈도의 변화와 관련하여 : 1. 연/월강수량의 변화에 따른 일강수량 분포의 변화분석)

  • Yun, Yong-Nam;Yu, Cheon-Sang;Lee, Jae-Su;An, Jae-Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.6
    • /
    • pp.617-625
    • /
    • 1999
  • Global warming has begun since the industrial revolution and it is getting worse recently. Even though the increase of greenhouse gases such as $CO_2$ is thought to be the main cause for global warming, its impact on global climate has not been revealed clearly in rather quantitative manners. However, researches using General Circulation Models(GCMs) has shown the accumulation of greenhouse gases increases the global mean temperature, which in turn impacts on the global water circulation pattern. This changes in global water circulation pattern result in abnormal and more frequent meteorological events such as severe floods and droughts, generally more severe than the normal ones, which are now common around the world and is referred as a indirect proof of global warming. Korean peninsula also cannot be an exception and have had several extremes recently. The main objective of this research is to analyze the impact of global warming on the change of flood and drought frequency. Based on the assumption that now is a point in a continuously changing climate due to global warming, we analyzed the observed daily rainfall data to find out how the increase of annual rainfall amount affects the distribution of daily rainfall. Obviously, the more the annual rainfall depth, the more frequency of much daily rainfall, and vice versa. However, the analysis of the 17 points data of Keum river basin in Korea shows that especially the number of days of under 10mm or over 50mm daily rainfall depth is highly correlated with the amount of annual rainfall depth, not the number of dry days with their correlation coefficients quite high around 0.8 to 0.9.

  • PDF

A Molecular Dynamics Simulation Study of Trioctahedral Clay Minerals (삼팔면체 점토광물에 대한 분자동역학 시뮬레이션 연구)

  • Lee, Jiyeon;Lee, Jin-Yong;Kwon, Kideok D.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.4
    • /
    • pp.161-172
    • /
    • 2017
  • Clay minerals play a major role in the geochemical cycles of metals in the Critical Zone, the Earth surface-layer ranging from the groundwater bottom to the tree tops. Atomistic scale research of the very fine particles can help understand the fundamental mechanisms of the important geochemical processes and possibly apply to development of hybrid nanomaterials. Molecular dynamics (MD) simulations can provide atomistic level insights into the crystal structures of clay minerals and the chemical reactivity. Classical MD simulations use a force field which is a parameter set of interatomic pair potentials. The ClayFF force field has been widely used in the MD simulations of dioctahedral clay minerals as the force field was developed mainly based on dioctahedral phyllosilicates. The ClayFF is often used also for trioctahedral mineral simulations, but disagreement exits in selection of the interatomic potential parameters, particularly for Mg atom-types of the octahedral sheet. In this study, MD simulations were performed for trioctahedral clay minerals such as brucite, lizardite, and talc, to test how the two different Mg atom types (i.e., 'mgo' or 'mgh') affect the simulation results. The structural parameters such as lattice parameters and interatomic distances were relatively insensitive to the choice of the parameter, but the vibrational power spectra of hydroxyls were more sensitive to the choice of the parameter particularly for lizardite.

Bond Strength Properties of CFRP Rebar in Concrete According to the Concrete Strength (콘크리트 강도에 따른 CFRP 보강근의 부착강도 특성)

  • Kim, Ho-Jin;Kim, Ju-Sung;Kim, Young-Jin;Choi, Jung-Wook;Park, Sun-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.569-577
    • /
    • 2021
  • CFRP(Carbon Fiber Reinforced Plastic) can maintain the same strength even if the diameter is reduced by about one - third, and the weight is about one - twentieth of that of the deformed reinforcing bars that have been used in the construction industry. In particular, it is resistant to corrosion, which is the weakest part of reinf orcing bars, and there is no concern that it will deteriorate over time, It is light and durable, so transportation costs are low and it is convenient for high-rise buildings. This paper experimentally clarifies the adhesive properties of CFRP and clarifies its behavior. That is, bond strength test was conducted with the directness of CFRP and the strength of concrete as experimental variables, and the bond mechanism was clarified experimentally. Furthermore, based on the experimental results, we constructed the bond stress-slip-strain relationship of CFRP compared to the existing deformed reinforcing bars.

A Study on Strength and Durability of Vibrated and Rolled Method Mortar Mixed with Desulfurized Gypsum and Ferronickel Slag Fine Powder (탈황석고와 페로니켈슬래그 미분말을 혼합한 진동전압방식 모르타르의 강도 및 내구성에 관한 연구)

  • Yoo, Jeong-Hwan;Park, Sang-Soon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.545-552
    • /
    • 2021
  • In this study, strength and durability evaluations are performed on vibrated-rolled method mortar mixtures containing desulfurized gypsum and ferronickel slag powder. Desulfurized gypsum and ferronickel slag fine powders were substituted for 25% limestone fine powders u sed in the manu factu re of VR tu bes, and mortar specimens were prepared u sing vibrated-rolled method. Accordingly, flexural and compressive strengths were performed to evaluate the strength, and chlorine ion penetration resistance and sulfuric acid resistance tests were performed to evaluate durability. Flexural and compressive strength were improved in the range 20 to 60% of desu lfu rized gypsu m among admixtu res, and the amou nt of passing charge decreased in the choride ion penetration resistance test in the range of 20 to 80% of desulfurized gypsum. As for the resistance to su lfu ric acid, when the proportion of desu lfu rized in the admixtu re was 40%, the strength and weight change rate according to the immersion period was reduced. Appropriate use of desulfurized gypsum and ferronickel slag powder is expected to improve performance in terms of strength and durability.

An Experimental Study on the Development of EMP Shielding Concrete Using Electric Furnace Oxidized Slag Aggregate (전기로산화슬래그 골재를 사용한 EMP차폐 콘크리트 개발에 관한 실험적 연구)

  • Min, Tae-Beom;Cho, Hyeong-Kyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.514-520
    • /
    • 2021
  • In this study, EMP shielding performance was evaluated using electric furnace oxidized slag to give EMP shielding performance to concrete among the most used materials in construction sites. As a result of the evaluation, the component of the electric furnace oxidation slag was found to have an Fe2O3 content of 34%, and it was also found to contain an MgO component of about 4.8%. In addition, as a result of conducting an aggregate stability evaluation due to concerns about expansion due to MgO components, it is considered to be suitable for the KS standard. EMP shielding performance evaluation result showed that there was no correlation in EMP shielding performance according to compressive strength, and that general aggregates did not have EMP shielding. However, it was found that the aggregate using the furnace oxidized slag had excellent EMP shielding performance, and the shielding performance improved as the thickness increased. As a result of the durability evaluation, it was found that the EMP shielding concrete has the durability of abortion compared to the general concrete. Through this, it is thought that it will be good to improve the shielding rate if concrete is manufactured using electric furnace oxide slag when constructing EMP shielding structures in the future.

A Study on the Fundamental Properties of Mortar Mixed with Converter Slag and Ferronickel Slag (전로슬래그 및 페로니켈슬래그를 혼입한 모르타르의 기초물성 연구)

  • Kim, Ji-Seok;Park, Eon-Sang;Ann, Ki-Yong;Cho, Won-Jung
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.152-160
    • /
    • 2021
  • Converter steel slag(BOF slag) is a vast amount of solid waste generated in the steelmaking process which has very low utilization rate in Korea. Due to the presence of free CaO which can derive bad volume stability in BOF slag, it usually land filled. For recycling BOF and identify its applicability as fine aggregate, this study investigates the fundamental characteristics of mortar with cement replaced ferronickel slag(FNS), which has the potential to be used as a binder. The results suggest that the mineral phases of BOF slag mainly include larnite(CaSiO4), mayenite(Ca12Al14O33) and wuestite(FeO) while olivine crystallines are shown in FNS. The results of flow and setting time reveals that the flowability and process of hardening increased when the amount of FNS and BOF slag incorporated was increased. The length change shows that the amount of change in the length of the mortar was almost constant regardless of mix proportion while compressive strength was reduced. Micro structure test results revealed that FNS or/and BOF slag mix took a long time to react in the cement matrix to form a complete hydration products. To achieve the efficient utilization of B OF slag as construction materials, proper replacement rate is necessary.