• Title/Summary/Keyword: 산업별 에너지 소비 변화요인

Search Result 4, Processing Time 0.016 seconds

Structural Decomposition Analysis on Changes in Industrial Energy Use in Korea, 1980~2000 (구조분해분석을 통한 국내 산업별 에너지 소비 변화요인 연구)

  • Kim, Jin-Soo;Heo, Eunnyeong
    • Environmental and Resource Economics Review
    • /
    • v.14 no.2
    • /
    • pp.257-290
    • /
    • 2005
  • Korean energy use in industrial sector has increased more rapidly than other sectors during 1980~2000 periods. Relatively higher increases in industrial sector energy consumption raise questions whether government policy of rationalization of industrial energy use has been effective. In this study, we use 80-85-90 and 90-95-00 constant price input-output table to analyze increases in industrial energy use. Using an adjusted version of structural decomposition model introduced by Chen and Rose (1990), we decompose Changes of energy use into 17 elements. We classify entire industry sector into 32 sectors including four energy sectors (coal and coal products, refined petroleum, electricity and town gas). We then analyze changes of energy use by industrial level to check differences among industrial energy demand structures. Finally, we compare three industries, electronic product manufacturing, metal manufacturing and construction, that represent technology and capital intensive, energy and material intensive and labor and capital intensive industry. As results, we find that high energy using industries make the most effort to reduce energy use. Primary metal, petrochemical and mon-metal industries show improvements in elements such as energy and material productivity, energy and material imports, energy substitution and material substitutions towards energy saving. These results imply that although those industries are heavy users of energy, they put the best effort to reduce energy use relative to other industries. We find various patterns of change in industrial energy use at industrial level. To reduce energy use, electronic product manufacturing industry needs more effort to improve technological change element while construction industry needs more effort to improve material input structure element.

  • PDF

Structural Decomposition Analysis for Energy Consumption of Industrial Sector with Linked Energy Input-Output Table 00-05-08 (접속불변에너지산업연관표 00-05-08을 이용한 산업별 에너지소비 변화량의 구조분해분석)

  • Kim, Yoon Kyung;Jang, Woon Jeong
    • Environmental and Resource Economics Review
    • /
    • v.20 no.2
    • /
    • pp.255-289
    • /
    • 2011
  • This study made linked Energy IO Table 00-05-08 of 76 sectors in intermediate sectors and analyzed structural decomposition analysis in energy consumption change in industrial sector with both by aggregate data and micro data. Structural decomposition analysis focused value added level change, value added share change of each industry, output structural change of each industry and energy intensity change of each industry as factors. Supply side model based on Ghosh inverse matrix was applied as empirical model because Korea has export driven industrial structure. Empirical results with aggregate data showed that value added change increased energy consumption and output structural change of each industry decreased energy consumption in both 2000~2005 and 2005~2008. However value added share change and energy intensity change caused opposite direction in energy consumption change with time. Policy based on aggregate data can not evaluate effort of each industry in energy efficiency and make effective results because aggregate data delete character of each industry.

  • PDF

An e-SAM Approach to the Analysis of Energy Consumption and CO2 Emissions in Korean Industry (환경사회계정행렬(e-SAM)을 이용한 산업활동의 환경 파급효과 분석)

  • Park, Chang-Gui;Lee, Kihoon
    • Journal of Environmental Policy
    • /
    • v.12 no.1
    • /
    • pp.101-123
    • /
    • 2013
  • This research aims to find out the existence of considerable induced effect that the conventional I-O model cannot. First, we construct an environmental Social Accounting Matrix for Korea by combining statistics on the Korean GDP and I-O with physical data on the fossil energy consumption and $CO_2$ emissions. The impacts of productive activities on fossil energy consumption and $CO_2$ emissions are evaluated by calculating the e-SAM multipliers. By applying decomposition technique further, we get direct, indirect, and induced effects of production activities by industry. The result of decomposing the e-SAM shows that while the direct effect of the electricity industry is large, its indirect effect is very small. In the case of the primary metal industry, both the direct and the indirect influence of this industry were very large. On the contrary, in case of the service industry, the induced effect of fossil energy consumption was as high as 50% of the gross effect. These results suggest that different energy policies should be established for different industries. Also, the findings show the e-SAM model is better than I-O model in analyzing implications of policies on energy use in the economy.

  • PDF

A Decomposition Analysis of Energy Productivity Change in Korean Manufacturing Industries: A Distance Function Approach (제조업 에너지 생산성 분해분석)

  • Kim, Kwang-Uk;Hwang, Seok-Joon
    • Environmental and Resource Economics Review
    • /
    • v.24 no.2
    • /
    • pp.411-433
    • /
    • 2015
  • This paper decomposed energy productivity changes across 14 Korean manufacturing industries into 5 components, technological catch-up(EC), technological progress(TC), and changes in labor-energy ratio(LC), capital-energy ratio(KC) and energy mix(EMC). Then we also figured out the possible relationship between energy productivity change and export growth rate across the industries. It is found that (1) technological progress, changes in capital-energy ratio and energy mix contribute to energy productivity growth in Korea during the sample period, (2) technological progress is the primary driving forces for energy productivity growth, (3) increase in export growth rate had a positive impact on energy productivity growth excepting a part of energy-intensive industries.