• Title/Summary/Keyword: 산업기초클래스

Search Result 4, Processing Time 0.021 seconds

AI Performance Based On Learning-Data Labeling Accuracy (인공지능 학습데이터 라벨링 정확도에 따른 인공지능 성능)

  • Ji-Hoon Lee;Jieun Shin
    • Journal of Industrial Convergence
    • /
    • v.22 no.1
    • /
    • pp.177-183
    • /
    • 2024
  • The study investigates the impact of data quality on the performance of artificial intelligence (AI). To this end, the impact of labeling error levels on the performance of artificial intelligence was compared and analyzed through simulation, taking into account the similarity of data features and the imbalance of class composition. As a result, data with high similarity between characteristic variables were found to be more sensitive to labeling accuracy than data with low similarity between characteristic variables. It was observed that artificial intelligence accuracy tended to decrease rapidly as class imbalance increased. This will serve as the fundamental data for evaluating the quality criteria and conducting related research on artificial intelligence learning data.

Anomaly Detection for User Action with Generative Adversarial Networks (적대적 생성 모델을 활용한 사용자 행위 이상 탐지 방법)

  • Choi, Nam woong;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.43-62
    • /
    • 2019
  • At one time, the anomaly detection sector dominated the method of determining whether there was an abnormality based on the statistics derived from specific data. This methodology was possible because the dimension of the data was simple in the past, so the classical statistical method could work effectively. However, as the characteristics of data have changed complexly in the era of big data, it has become more difficult to accurately analyze and predict the data that occurs throughout the industry in the conventional way. Therefore, SVM and Decision Tree based supervised learning algorithms were used. However, there is peculiarity that supervised learning based model can only accurately predict the test data, when the number of classes is equal to the number of normal classes and most of the data generated in the industry has unbalanced data class. Therefore, the predicted results are not always valid when supervised learning model is applied. In order to overcome these drawbacks, many studies now use the unsupervised learning-based model that is not influenced by class distribution, such as autoencoder or generative adversarial networks. In this paper, we propose a method to detect anomalies using generative adversarial networks. AnoGAN, introduced in the study of Thomas et al (2017), is a classification model that performs abnormal detection of medical images. It was composed of a Convolution Neural Net and was used in the field of detection. On the other hand, sequencing data abnormality detection using generative adversarial network is a lack of research papers compared to image data. Of course, in Li et al (2018), a study by Li et al (LSTM), a type of recurrent neural network, has proposed a model to classify the abnormities of numerical sequence data, but it has not been used for categorical sequence data, as well as feature matching method applied by salans et al.(2016). So it suggests that there are a number of studies to be tried on in the ideal classification of sequence data through a generative adversarial Network. In order to learn the sequence data, the structure of the generative adversarial networks is composed of LSTM, and the 2 stacked-LSTM of the generator is composed of 32-dim hidden unit layers and 64-dim hidden unit layers. The LSTM of the discriminator consists of 64-dim hidden unit layer were used. In the process of deriving abnormal scores from existing paper of Anomaly Detection for Sequence data, entropy values of probability of actual data are used in the process of deriving abnormal scores. but in this paper, as mentioned earlier, abnormal scores have been derived by using feature matching techniques. In addition, the process of optimizing latent variables was designed with LSTM to improve model performance. The modified form of generative adversarial model was more accurate in all experiments than the autoencoder in terms of precision and was approximately 7% higher in accuracy. In terms of Robustness, Generative adversarial networks also performed better than autoencoder. Because generative adversarial networks can learn data distribution from real categorical sequence data, Unaffected by a single normal data. But autoencoder is not. Result of Robustness test showed that he accuracy of the autocoder was 92%, the accuracy of the hostile neural network was 96%, and in terms of sensitivity, the autocoder was 40% and the hostile neural network was 51%. In this paper, experiments have also been conducted to show how much performance changes due to differences in the optimization structure of potential variables. As a result, the level of 1% was improved in terms of sensitivity. These results suggest that it presented a new perspective on optimizing latent variable that were relatively insignificant.

A Web-based Monitoring System of Class Status (웹기반 학업상태모니터링시스템의 구현)

  • Hur Tae-Won
    • Journal of Engineering Education Research
    • /
    • v.8 no.4
    • /
    • pp.5-19
    • /
    • 2005
  • Computer based teaming system has considerable influence upon teaching technique and teaming efficiency. It is possible to make a learner-oriented teaching in the online learning system. In this case, it can provide easily and immediately learner with various information that relate to class status, for example, attendance, examination score and so on. In the case of conventional off-line education, however, it is inefficient to provide the information of class status for learners compared with on-line system. In this paper, we propose a monitoring system of class status which can provide various information of teaming status for learners, instructors and advisors. It is useful to advise student's course work and job. The main purpose of this system is to prepare a monitoring system of class status on a web based e-class system. It achieves self-monitoring systems which provide a feedback data as a result of class for students.

Development of IFC Standard for Securing Interoperability of BIM Data for Port Facilities (항만 BIM 데이터의 상호운용성 확보를 위한 IFC 표준 개발)

  • Moon, Hyoun-Seok;Won, Ji-Sun;Shin, Jae-Young
    • Journal of KIBIM
    • /
    • v.10 no.1
    • /
    • pp.9-22
    • /
    • 2020
  • Recently, BIM has been extended to infrastructures such as roads and bridges, and the demand for BIM standard development for ports is increasing internationally. Due to the low level of utilization of classification system and drawing standards compared to other infrastructures, and the closed nature of national security facilities, ports have insufficient level of connection and sharing environment among external systems or users. In addition, since the standardization of data for port facilities is not made, it is still necessary to establish an independent DB for each system and to ensure interoperability of data between these systems since it does not have a shared environment among similar data. Therefore, the purpose of this study is to develop and verify IFC, the international standard for BIM, in order to cope with the BIM environment and to be commonly used in the design, construction, and maintenance of port facilities. To this end, we build a standard schema with port-specific Express Notation according to buildingSMART International's standard development methodology. First, domestic and international reference model standards were analyzed to derive components such as space and facilities of port facilities. Based on this, the components of the port facility were derived through the codification, categorization, and normalization process developed by the research team. This was extended based on the port BIM object classification system developed by the research team. Normalization results were verified by designers and associations. Then, IFC schema construction was based on Express-G data modeling based on IFC 4 * 2 Candidate, which is a bridge candidate standard based on IFC4 (ISO16739), and IFC 4 * 3 Draft, which is developed by buildingSMART International. The final schema was validated using the commercialized validation tool. In addition, in order to verify the structural verification of the port IFC schema, the transformation process was verified by converting the caisson model into a Part21 file. In the future, this result will not only be used as a delivery standard for port BIM products, but will also be applied as a linkage standard between systems and a common data format for port BIM platforms when BIM is used in the maintenance phase. In particular, it is expected to be used as a core standard for data exchange in the port maintenance stage.