• Title/Summary/Keyword: 산소 분포

Search Result 558, Processing Time 0.032 seconds

The Ecological Study of Phytoplankton in Kyeonggi Bay, Yellow Sea 1. Environmental Characteristics (西海 京畿 植物 플랑크톤에 對한 생態學的 硏究 I. 京畿 의 環境特性)

  • 최중기;심재형
    • 한국해양학회지
    • /
    • v.21 no.1
    • /
    • pp.56-71
    • /
    • 1986
  • In order to clarify the influence of environmental factors on the phytoplankton cmmunity in Kyeonggi Bay, the hydrological and water quality data were obtained from 20cruises from May, 1981, to September, 1982 in this bay. Physical conditions at the mouth of the bay are more stable than those at the head of the bay. Temperatures and salinities of the upper part of the bay show great seasonal fluctuations due to the river discharge. By the extending effects of freshwater, a weak two-layer flow system is formed from the upper part of the bay to Palmi Island. In summer thermal stratification are formed in the middle and outer parts of the bay. In winter, However, the temperature shows no vertical temperature gradient. The inner bay and the vicinity area of Incheon Harbour are relatively polluted and eutrophicated due to both the runoff of freshwater from the Han River and the waste discharge from Incheon industrial complex. However, except the polluted area, the study areas are well oxygenated with more than 90% saturation.

  • PDF

Dynamic Characteristics of Water Column Properties based on the Behavior of Water Mass and Inorganic Nutrients in the Western Pacific Seamount Area (서태평양 해저산 해역에서 수괴와 무기영양염 거동에 기초한 동적 수층환경 특성)

  • Son, Juwon;Shin, Hong-Ryeol;Mo, Ahra;Son, Seung-Kyu;Moon, Jai-Woon;Kim, Kyeong-Hong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.3
    • /
    • pp.143-156
    • /
    • 2015
  • In order to understand the dynamic characteristics of water column environments in the Western Pacific seamount area (approximately $150.2^{\circ}E$, $20^{\circ}N$), we investigated the water mass and the behavior of water column parameters such as dissolved oxygen, inorganic nutrients (N, P), and chlorophyll-a. Physico-chemical properties of water column were obtained by CTD system at the nine stations which were selected along the east-west and south-north direction around the seamount (OSM14-2) in October 2014. From the temperature-salinity diagram, the main water masses were separated into North Pacific Tropical Water and Thermocline Water in the surface layer, North Pacific Intermediate Water in the intermediate layer, and North Pacific Deep Water in the bottom layer, respectively. Oxygen minimum zone (OMZ, mean $O_2$ $73.26{\mu}M$), known as dysoxic condition ($O_2<90{\mu}M$), was distributed in the depth range of 700~1,200 m throughout the study area. Inorganic nutrients typified by nitrite + nitrate and phosphate showed the lowest concentration in the surface mixed layer and then gradually increased downward with representing the maximum concentration in the OMZ, with lower N:P ratio (13.7), indicating that the nitrogen is regarded as limiting factor for primary production. Vertical distribution of water column parameters along the east-west and south-north station line around the seamount showed the effect of bottom water inflowing at around 500 m deep in the western and southern region, and concentrations of water column parameters in the bottom layer (below 2,500 m deep) of the western and southern region were differently distributed comparing to those of the other side regions (eastern and northern). The value of Excess N calculated from Redfield ratio (N:P=16:1) represented the negative value throughout the study area, which indicated the nitrogen sink dominant environments, and relative higher value of Excess N observed in the bottom layer of western and southern region. These observations suggest that the topographic features of a seamount influence the circulation of bottom current and its effects play a significant role in determining the behavior of water column environmental parameters.

Community structure analysis of nitrifying biofilms by 16S rRNA targeted probe and fluorescence in situ hybridization (FISH)

  • Han, Dong-U;Kim, Dong-Jin
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.282-285
    • /
    • 2001
  • The microbial community structure and in situ spatial distribution of ammonia oxidizing and nitrite oxidizing bacteria in nitrifying biofilm of an upflow biological aerated filter system were investigated. The reactor had been continuously operated under high free ammonia concentration and low DO concentration for nitrite accumulation more than 2 years before the experiment. Fluorescence in situ hybridization

  • PDF

The Whole Region Pressure Measurement of Cavity Downstream using PSP Technique (PSP를 이용한 Cavity 후류의 전역적 압력분포 측정)

  • Kim, Ki-Su;Jeon, Young-Jin;Seo, Hyung-Seok;Byun, Yung-Hwan;Lee, Jae-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.317-321
    • /
    • 2007
  • PSP (Pressure Sensitive Paint) technique can measure continuous pressure field by analyzing the oxygen quantity using optical method. The surface pressure of down stream after the sonic jet that injected transversely into the supersonic freestream was measured by PSP technique. Moreover the effect of various rectangular shaped cavities in front of the jet was measured by PSP technique. A comparison of the PSP results with conventional pressure tap and CFD indicates good agreement. The result shows that the cavity affects the pressure distribution in the rear of the jet injection.

  • PDF

Influence of relative distance between heater and quartz crucible on temperature profile of hot-zone in Czochralski silicon crystal growth (쵸크랄스키법 실리콘 성장로에서 핫존 온도분포 경향에 대한 히터와 석영도가니의 상대적 위치의 영향)

  • Kim, Kwanghun;Kwon, Sejin;Kim, Ilhwan;Park, Junseong;Shim, Taehun;Park, Jeagun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.5
    • /
    • pp.179-184
    • /
    • 2018
  • To lessen oxygen concentrations in a wafer through modifying the length of graphite heaters, we investigated the influence of relative distance from heater to quartz crucible on temperature profile of hot-zone in Czochralski silicon-crystal growth by simulation. In particular, ATC temperature and power profiles as a function of different ingot body positions were investigated for five different heater designs; (a) typical side heater (SH), (b) short side heater-up (SSH-up), (c) short side heater-low (SSH-low), (d) bottom heater without side heater (Only-BH), and (e) side heater with bottom heater (SH + BH). It was confirmed that lower short side heater exhibited the highest ATC temperature, which was attributed to the longest distance from triple point to heater center. In addition, for the viewpoint of energy efficiency, it was observed that the typical side heater showed the lowest power because it heated more area of quartz crucible than that of others. This result provides the possibility to predict the feed-forward delta temperature profile as a function of various heater designs.

Characteristics of Nutrients Distribution in Summer and Winter in the South Sea (여름과 겨울철 남해의 영양염 분포 특성)

  • Lee, Tong-Sup
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.4
    • /
    • pp.371-382
    • /
    • 1999
  • This paper presents the results of recent nutrients measurement and analysis in relation to other environmental parameters such as temperature, salinity, AOU and pH in the South Sea, Korea. In summer, temperature showed stronger correlation with nutrients than salinity and also did the parameters related to biological activities such as pH and AOU. Implications of above results exemplify that primary producers in the vicinity of salt front actively consumed nutrients so that nutrients-salinity correlation is strongly modified in the salt front. Nutrient in winter showed significant correlation only with temperature. Nutrient distribution seems governed by the location of thermal front between vertically mixed cold water in northern area and warm waters flowing north. Due to weak biological activity in winter pH-nutrients correlation, which was strongest in summer ($R^2$ >0.6) dropped sharply in winter ($R^2$ <0.5). Depth integrated nitrate+nitrite, phosphate and silicate values are 321 $mmol{\cdot}m^{-2}$, 23 $mmol{\cdot}m^{-2}$, 637 $mmol{\cdot}m^{-2}$ in summer and 261 $mmol{\cdot}m^{-2}$, 31 $mmol{\cdot}m^{-2}$, 742 $mmol{\cdot}m^{-2}$ in winter, respectively. NIP values in summer exhibit phosphorus deficiency, however, winter situation is reversed for nitrogen. Nitrogen input via precipitation and riverine discharge in wet season seems potentially critical for maintaining the South Sea ecosystem.

  • PDF

Changes in Distribution and Morphology of Rat Alveolar Macrophage Subpopulations in Acute Hyperoxic Lung Injury Model (고농도 산소로 유발한 흰쥐의 급성폐손상모델에서 폐포대식세포 아형군의 분포와 형태 변화)

  • Shin, Yoon;Lee, Sang-Haak;Yoon, Hyoung-Kyu;Lee, Sook-Young;Kim, Seok-Chan;Kwon, Soon-Seog;Kim, Young-Kyoon;Kim, Kwan-Hyung;Moon, Hwa-Sik;Song, Jeong-Sup;Park, Sung-Hak
    • Tuberculosis and Respiratory Diseases
    • /
    • v.48 no.4
    • /
    • pp.478-486
    • /
    • 2000
  • Background : In acute lung injury, alveolar macrophages play a pivotal role in the inflammatory process during the initiation phase and in the reconstruction and fibrosis process during the later phase. Recently, it has been proven that alveolar macrophages are constituted by morphologically, biochemically and immunologically heterogenous cell subpopulations. The possibility of alterations to these characteristics of the alveolar macrophage population during lung disease has been raised. To investigate such a possibility a hyperoxic rat lung model was made to check the distributional and morphological changes of rat alveolar macrophage subpopulation in acute hyperoxic lung injury. Method : Alveolar macrophage were lavaged from normal and hyperoxic lung injury rats and separated by discontinuous gradients of percoll. After cell counts of each density fraction were accessed, the morphomeric analysis of alveolar macrophages was performed on cytocentrifuged preparations by transmission electron micrograph. Result : 1. The total alveolar macrophage cell count significantly increased up to 24 hours after hyperoxic challenge (normal control group $171.6{\pm}24.1{\times}10^5$, 12 hour group $194.8{\pm}17.9{\times}10^5$, 24 hour group $207.6{\pm}27.1{\times}10^5$, p<0.05). oHoHH However the 48 hour group ($200.0{\pm}77.8{\times}10^5$) did not show a significant difference. 2. Alveolar septal thickness significantly increased up to 24 hours after hyperoxic challenge(normal control group $0.7{\pm}0.2{\mu}m$, 12 hour group $1.5{\pm}0.4{\mu}m$, 24 hour group $2.3{\pm}0.4{\mu}m$, p<0.05). However the 48 hour group did not show further change ($2.5{\pm}0.4{\mu}m$). Number of interstitial macrophage markedly increased at 24 hour group. 3. Hypodense fraction(fraction 1 and fraction 2) of alveolar macrophage showed a significant increase following hyperoxic challenge ($\beta=0.379$.$\beta=0.694$. p<0.05) ; however, fraction 3 was rather decreased following the hyperoxic challenge($\beta=0.815$. p<0.05), and fraction 4 showed an irregular pattern. 4. Electron microscopic observation of alveolar macrophage from each fraction revealed considerable morphologic heterogeneity. Cells of the most dense subfraction(fraction 4) were small, round, and typically highly ruffled with small membrane pseudopods. Cells of the least dense fraction (fraction 1) were large and showed irregular eccentric nucleus and high number of heterogenous inclusions. Conclusion : In conclusion, these results suggest that specific hypodense alveolar macrophage subpopulation may play a an important role in an acute hyperoxic lung injury model But further study, including biochemical and immunological function of these subpopulations, is needed.

  • PDF

Effect of non-uniform magnetic field on the thermal behavior and mass transfer in magnetohydrodynamic Czochralski crystal growth of silicon (Magnetic Czochralski 실리콘 단결정 성장에서 열 및 유체유동과 질량전달에 미치는 비균일 자장의 효과)

  • 김창녕
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.4
    • /
    • pp.555-562
    • /
    • 1998
  • Under the influence of non-uniform magnetic field, melt flow in steady state and oxygen concentration in unsteady state are numerically investigated. The strength of the applied characteristic magnetic fields are B=0.1T, 0.2T, and 0.3T, respectively. The buoyancy effects due to the crucible wall heating and the thermocapillary effects due to the surface tention at the free surface are suppressed differentially by the non-uniform magnetic fields. As the intensity of characteristic magnetic fields is increasing, the recirculation region in the meridional plane is moving toward the growing crystal, and is diminishing. The oxygen concentration on the growing surface of crystals is decreasing and the uniformity of the oxygen concentration is increasing as the intensity of the magnetic fields is increasing.

  • PDF

Effect of Oxygen Enriched Air on the Combustion Characteristics in a Coaxial Non-Premixed Jet (II) - Flame Structure and Temperature Distribution - (산소부화공기가 동축 비예혼합 제트의 연소특성에 미치는 영향 (II) - 화염의 구조와 온도분포 -)

  • Kwark, Ji-Hyun;Jeon, Chung-Hwan;Jang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.223-229
    • /
    • 2004
  • Combustion using oxygen enriched air is known as a technology which can increase thermal efficiency due to increase of the flame temperature. Flame shapes, schlieren photos, OH radical chemiluminescence and local flame temperature were examined as a function of OEC(Oxygen Enriched Concentration) in a coaxial non-premixed jet. With increase of OEC, flame length and width decreased, but its brightness increased significantly, and the size of vortices in the flame also increased. Especially, the reaction around the flame surface became active. The strong OH intensity appeared to be made and moved from middle stream to upper one with increase of OEC, which shows combustion reaction in the upper stream becomes more dominant In addition, the temperature distributions of the flames showed similar tendency with OH radical intensities. A flame with high temperature and strong stability was obtained with increasing OEC of the coflow.

Emission Stability of Semiconductor Nanowires (반도체 나노와이어에서 전자방출 안정성)

  • Yu, Se-Gi;Jeong, Tae-Won;Lee, Sang-Hyun;Heo, Jung-Na;Lee, Jeong-Hee;Lee, Cheol-Jin;Kim, Jin-Young;Lee, Hyung-Sook;Kuk, Yoon-Pil;Kim, J.M.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.5
    • /
    • pp.499-505
    • /
    • 2006
  • Field emission of GaN and GaP nanowires, synthesized by thermal chemical vapor deposition, and their emission stabilities under oxygen and argon environments were investigated. The field emission current of GaN nanowires was seriously deteriorated under oxygen environment, while that of GaP was not. Both wires did not show any noticeable change under argon environment. The existence of oxide outer shell layers in the GaP nanowires was proposed to be a main reason for this emission stability behavior. Field emission energy distributions of electrons from these nanowires revealed that field emission mechanism of the semiconductor nanowires were different from that of carbon nanotubes.