• Title/Summary/Keyword: 산소 미세 펌프

Search Result 3, Processing Time 0.016 seconds

Micro Cell Counter Integrated with An Oxygen Micropump (산소 미세 펌프가 내장된 미세 세포 계수기)

  • Son, Sang-Uk;Choi, Yo-Han;Lee, Seung-Seob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1159-1165
    • /
    • 2004
  • This paper describes fabrication of a micro cell counter integrated with an oxygen micropump and counting experiment with Sephadex G-25 beads ($70{\sim}100\;{\mu}m$). The pumping part consisted of a microheater, catalyst (manganese dioxide) enveloped with paraffin, hydrogen peroxide, and microchannel, and the counting part consisted of collimated light, a microwindow, and a phototransistor including an external circuit. The micropump generated oxygen gas by decomposing hydrogen peroxide with manganese dioxide, which was initiated by melting the paraffin with the microheater, and pumped beads in the microchannel. When the beads passed the microwindow, they shaded the collimated light and changed the illumination on the phototransistor, which caused the current variation in the circuit. The signals, according to the bead size, reached up to 22 mV with noise level of 2 mV during 50 seconds and the numbers of peaks were analyzed by magnitude.

Application of the Pulsatile Cardiopulmonary Bypass in Animal Model (이중 박동성 인공심폐기의 동물 실험)

  • Shin, Hwa-Kyun;Won, Yong-Soon;Lee, Jea-Yook;Her, Keun;Yeum, Yook;Kim, Seung-Chul;Min, Byoung-Goo
    • Journal of Chest Surgery
    • /
    • v.37 no.1
    • /
    • pp.1-10
    • /
    • 2004
  • Background: Currently, the cardiopulmonary machine with non-pulsatile pumps, which are low in internal circuit pressure and cause little damage to blood cells, is widely used. However, a great number of experimental studies shows that pulsatile perfusions are more useful than non-pulsatile counterparts in many areas, such as homodynamic, metabolism, organ functions, and micro-circulation. Yet, many concerns relating to pulsatile cardiopulmonary machines, such as high internal circuit pressure and blood cell damage, have long hindered the development of pulsatile cardiopulmonary machines. Against this backdrop, this study focuses on the safety and effectiveness of the pulsatile cardiopulmonary machines developed by a domestic research lab. Material and Method: The dual-pulsatile cardiopulmonary bypass experiment with total extracorporeal circulation was conducted on six calves, Extracorporeal circulation was provided between superior/inferior vena cava and aorta. The membrane oxygenator, which was placed between the left and right pumps, was used for blood oxygenation. Circulation took four hours. Arterial blood gas analysis and blood tests were also conducted. Plasma hemoglobin levels were calculated, while pulse pressure and internal circuit pressure were carefully observed. Measurement was taken five times; once before the operation of the cardiopulmonary bypass, and after its operation it was taken every hour for four hours. Result: Through the arterial blood gas analysis, PCO2 and pH remained within normal levels. PO2 in arterial blood showed enough oxygenation of over 100 mmHg. The level of plasma hemoglobin, which had total cardiopulmonary circulation, steadily increased to 15.87 $\pm$ 5.63 after four hours passed, but remained below 20 mg/㎗. There was no obvious abnormal findings in blood test. Systolic blood pressure which was at 97.5$\pm$5.7 mmHg during the pre-circulation contraction period, was maintained over 100 mmHg as time passed. Moreover, diastolic blood pressure was 72.2 $\pm$ 7.7 mmHg during the expansion period and well kept at the appropriate level with time passing by. Average blood pressure which was 83$\pm$9.2 mmHg before circulation, increased as time passed, while pump flow was maintained over 3.3 L/min. Blood pressure fluctuation during total extracorporeal circulation showed a similar level of arterial blood pressure of pre-circulation heart. Conclusion: In the experiment mentioned above, pulsatile cardiopulmonary machines using the doual-pulsatile structure provided effective pulsatile blood flow with little damage in blood cells, showing excellence in the aspects of hematology and hemodynamic. Therefore, it is expected that the pulsatile cardiopulmonary machine, if it becomes a standard cardiopulmonary machine in all heart operations, will provide stable blood flow to end-organs.

End Point Temperature of Rewarming and Afterdrop After Hypothermic Cardiopulmonary Bypass in Pediatric Patients (소아에서의 저체온 심폐바이패스후 재가온 종료온도와 후하강)

  • Kim, Won-Gon;Lee, Hae-Won;Lim, Cheong
    • Journal of Chest Surgery
    • /
    • v.30 no.2
    • /
    • pp.125-130
    • /
    • 1997
  • Separating the patient from hypothermic cardiopulmonary bypass(CPB) before achieving adequate rewarming often results in afterdrop, which can predispose to electrolyte disturbances, arrhythmia, hemodynamic alterations, and shivering-induced increase of oxygen consumption. In an attempt to find an adequate end point temperature of rewarming after hypothermic CPB, 50 pediatric cardiac surgical patients were r ndomly assigned for end point temperature of rewarming of 35.5$^{\circ}C$ (Group 1) or 37t (Group 2), rectal temperature. Thereafter the rectal temperature was measured half, one, four, eight, and 16 hour after arrival to the intensive care unit(ICU), with heart rate and blood pressure. Additionally the rectal temperature was compared with esophageal temperature during CPB, and axillary temperature luring stay in the ICU. Nonpulsatile perfusion with a roller pump was used in all patients and a membrane or bubble oxygenator was used for oxygenation. Both groups were comparable with respect to age, sex, body surface area, total bypass time, and rewarming time. There was no afterdrop in both groups, and there were no statistical differences in the rectal temperatures between two groups. There were also no statistical dilyerences with respect to the heart rate and blood pressure between two groups. At the end of rewarming the esophageal temperature was higher than the rectal temperature. The axil ary temperature measured in ICU was always lower than the rectal temperature. No shivering was noted in all patients. In conclusion, with restoration of rectal temperature above 35.5$^{\circ}C$ at the end of CPB in pediatric patients, we did not observe an afterdrop.

  • PDF