• Title/Summary/Keyword: 산불지도

Search Result 36, Processing Time 0.018 seconds

Forest Information Mapping using GIS and Forest Basic Statistics (GIS 및 산림기본통계를 이용한 산림정보지도 제작)

  • Park, Joon-Kyu;Lee, Jong-Sin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.370-377
    • /
    • 2018
  • Currently, Korea is ahead of the forest sector such as forest management, forest investigation and forest management, which is not insufficient compared with the forest advanced countries (Germany, Japan, Austria). However, there is a lack of systematic and advanced forest management plan and related research, and it is not enough to construct GIS for practical and complex analysis. Therefore, in order to perform forest analysis effectively, this study maps forest basic statistics (2010, 2015) based on GIS to map forest information. As a result, the forest area, growing stock, average growing stock, and forest rate could be produced with the maximized visual effect by detailed administrative districts, and systematic analysis of the time series changes was also possible. Forest area increased only in Goseong, Sejong, Cheolwon, Yeoncheon, Daejeon, and Seoul Guro-gu, and decreased in all other areas, while growing stock increased in most areas, Uljin, Ulleung, Seoul Nowon-gu, and Seoul Gangdong-gu. The average growing stock was found to increase in most areas excluding the four administrative districts and the forest rate was higher in 10 regions (Goseong, Yeoncheon, Gongju, Busan Dong-gu, Daegu Seo-gu, etc.) but it decreased in most regions excluding 10 regions. Based on this research, we plan to produce and analyze forest information maps for smaller administrative districts and more.

A Study for Forest Research using Airborne Laser Scanning (항공레이저측량을 이용한 산림조사 방법에 관한 연구)

  • Kim, Eun-Young;Wie, Gwang-Jae;Cho, Heung-Muk;Yang, In-Tae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.3
    • /
    • pp.299-304
    • /
    • 2010
  • Depending on the progress of the surveying and information processing technology, the rapidly developing field of spatial information and the 3D real world spatial information for a variety of content on the computer was able to easily access. In this research, to study on the spot or to use aerial photographs to measure trees of the acquired data, calculate the trees height, forest area and capacity, determine the distribution of the density of acquired points in the forest and analyze accurate and objective information was acquired. The United States, Canada and so on through the capacity of trees biomass, forest resource analysis, time series monitoring, wildfire behavior modeling and applied research and has been declared. During worldwide is increasing interest in forest resources. In nationally, extensive research and analysis of the forest consists of the correct management and protection of forest resources to be effective.

The Environmental Preservation and Sustainable Use of Apsan(Mountain) in Daegu (대구 앞산의 환경보존과 지속가능한 이용)

  • Jeon, Young-Gweon
    • Journal of the Korean association of regional geographers
    • /
    • v.12 no.6
    • /
    • pp.645-655
    • /
    • 2006
  • Apsan, as part of the main ecosystem of Daegu city, plays an important role for maintaining the environmental sustainability of the large city. Especially varieties of valuable resources, which are cultural, historical, biological, geomorphological and geological, are distributed around Apsan. Therefore the positive preservation plan is required. This paper aims to examine the environmental characteristics of Apsan and then suggests the following ideas for the environmental preservation and sustainable use of Apsan. 1) 'The New Map of Apsan' that includes more exact information needs to be produced. 2) The Apsan ecosystem management plan should be made under the precision natural ecology investigation. 3) For the protection of inanimate object resources, such as geographical feature and geology, the Geotourism Department needs to be established within Daegu metropolitan office of education or the tourism division of Daegu city government. 4) An effective environmental-impact-assessment system should be officially established. 5) the positive administrative and financial support system led by local NGOs is required for the Apsan environmental protection activities and education. 6) It is necessary to bring out into the open prayer sites to prevent forest fire. 7) 'The nature rest year system' enforcement is required to restore the damaged ecological space of Apsan.

  • PDF

Visible and SWIR Satellite Image Fusion Using Multi-Resolution Transform Method Based on Haze-Guided Weight Map (Haze-Guided Weight Map 기반 다중해상도 변환 기법을 활용한 가시광 및 SWIR 위성영상 융합)

  • Taehong Kwak;Yongil Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.283-295
    • /
    • 2023
  • With the development of sensor and satellite technology, numerous high-resolution and multi-spectral satellite images have been available. Due to their wavelength-dependent reflection, transmission, and scattering characteristics, multi-spectral satellite images can provide complementary information for earth observation. In particular, the short-wave infrared (SWIR) band can penetrate certain types of atmospheric aerosols from the benefit of the reduced Rayleigh scattering effect, which allows for a clearer view and more detailed information to be captured from hazed surfaces compared to the visible band. In this study, we proposed a multi-resolution transform-based image fusion method to combine visible and SWIR satellite images. The purpose of the fusion method is to generate a single integrated image that incorporates complementary information such as detailed background information from the visible band and land cover information in the haze region from the SWIR band. For this purpose, this study applied the Laplacian pyramid-based multi-resolution transform method, which is a representative image decomposition approach for image fusion. Additionally, we modified the multiresolution fusion method by combining a haze-guided weight map based on the prior knowledge that SWIR bands contain more information in pixels from the haze region. The proposed method was validated using very high-resolution satellite images from Worldview-3, containing multi-spectral visible and SWIR bands. The experimental data including hazed areas with limited visibility caused by smoke from wildfires was utilized to validate the penetration properties of the proposed fusion method. Both quantitative and visual evaluations were conducted using image quality assessment indices. The results showed that the bright features from the SWIR bands in the hazed areas were successfully fused into the integrated feature maps without any loss of detailed information from the visible bands.

Application of GIS to the Universal Soil Loss Equation for Quantifying Rainfall Erosion in Forest Watersheds (산림유역의 토양유실량(土壤流失量) 예측을 위한 지리정보(地理情報)시스템의 범용토양유실식(汎用土壤流失式)(USLE)에의 적용)

  • Lee, Kyu Sung
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.3
    • /
    • pp.322-330
    • /
    • 1994
  • The Universal Soil Loss Equation (USLE) has been widely used to predict long-term soil loss by incorporating several erosion factors, such as rainfall, soil, topography, and vegetation. This study is aimed to introduce the LISLE within geographic information system(GIS) environment. The Kwangneung Experimental Forest located in Kyongki Province was selected for the study area. Initially, twelve years of hourly rainfall records that were collected from 1982 to 1993 were processed to obtain the rainfall factor(R) value for the LISLE calculation. Soil survey map and topographic map of the study area were digitized and subsequent input values(K, L, S factors) were derived. The cover type and management factor (C) values were obtained from the classification of Landsat Thematic Mapper(CM) satellite imagery. All these input values were geographically registered over a common map coordinate with $25{\times}25m^2$ ground resolution. The USLE was calculated for every grid location by selecting necessary input values from the digital base maps. Once the LISLE was calculated, the resultant soil loss values(A) were represented by both numerical values and map format. Using GIS to run the LISLE, it is possible to pent out the exact locations where soil loss potential is high. In addition, this approach can be a very effective tool to monitor possible soil loss hazard under the situations of forest changes, such as conversion of forest lands to other uses, forest road construction, timber harvesting, and forest damages caused by fire, insect, and diseases.

  • PDF

Parameterization and Application of a Forest Landscape Model by Using National Forest Inventory and Long Term Ecological Research Data (국가산림자원조사와 장기생태연구 자료를 활용한 산림경관모형의 모수화 및 적용성 평가)

  • Cho, Wonhee;Lim, Wontaek;Kim, Eun-Sook;Lim, Jong-Hwan;Ko, Dongwook W.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.3
    • /
    • pp.215-231
    • /
    • 2020
  • Forest landscape models (FLMs) can be used to investigate the complex interactions of various ecological processes and patterns, which makes them useful tools to evaluate how environmental and anthropogenic variables can influence forest ecosystems. However, due to the large spatio-temporal scales in FLMs studies, parameterization and validation can be extremely challenging when applying to new study areas. To address this issue, we focused on the parameterization and application of a spatially explicit forest landscape model, LANDIS-II, to Mt. Gyebang, South Korea, with the use of the National Forest Inventory (NFI) and long-term ecological research (LTER) site data. In this study, we present the followings for the biomass succession extension of LANDIS-II: 1) species-specific and spatial parameters estimation for the biomass succession extension of LANDIS-II, 2) calibration, and 3) application and validation for Mt. Gyebang. For the biomass succession extension, we selected 14 tree species, and parameterized ecoregion map, initial community map, species growth characteristics. We produced ecoregion map using elevation, aspect, and topographic wetness index based on digital elevation model. Initial community map was produced based on NFI and sub-alpine survey data. Tree species growth parameters, such as aboveground net primary production and maximum aboveground biomass, were estimated from PnET-II model based on species physiological factors and environmental variables. Literature data were used to estimate species physiological factors, such as FolN, SLWmax, HalfSat, growing temperature, and shade tolerance. For calibration and validation purposes, we compared species-specific aboveground biomass of model outputs and NFI and sub-alpine survey data and calculated coefficient of determination (R2) and root mean square error (RMSE). The final model performed very well, with 0. 98 R2 and 8. 9 RMSE. This study can serve as a foundation for the use of FLMs to other applications such as comparing alternative forest management scenarios and natural disturbance effects.