• Title/Summary/Keyword: 산불발생인자

Search Result 56, Processing Time 0.027 seconds

Forest Fire Risk Analysis Using a Grid System Based on Cases of Wildfire Damage in the East Coast of Korean Peninsula (동해안 산불피해 사례기반 격자체계를 활용한 산불위험분석)

  • Kuyoon Kim ;Miran Lee;Chang Jae Kwak;Jihye Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_2
    • /
    • pp.785-798
    • /
    • 2023
  • Recently, forest fires have become frequent due to climate change, and the size of forest fires is also increasing. Forest fires in Korea continue to cause more than 100 ha of forest fire damage every year. It was found that 90% of the large-scale wildfires that occurred in Gangwon-do over the past five years were concentrated in the east coast area. The east coast area has a climate vulnerable to forest fires such as dry air and intermediate wind, and forest conditions of coniferous forests. In this regard, studies related to various forest fire analysis, such as predicting the risk of forest fires and calculating the risk of forest fires, are being promoted. There are many studies related to risk analysis for forest areas in consideration of weather and forest-related factors, but studies that have conducted risk analysis for forest-friendly areas are still insufficient. Management of forest adjacent areas is important for the protection of human life and property. Forest-adjacent houses and facilities are greatly threatened by forest fires. Therefore, in this study, a grid-based forest fire-related disaster risk map was created using factors affected by forest-neighboring areas using national branch numbers, and differences in risk ratings were compared for forest areas and areas adjacent to forests based on Gangneung forest fire cases.

Development of the Surface Forest Fire Behavior Prediction Model Using GIS (GIS를 이용한 지표화 확산예측모델의 개발)

  • Lee, Byungdoo;Chung, Joosang;Lee, Myung-Bo
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.6
    • /
    • pp.481-487
    • /
    • 2005
  • In this study, a GIS model to simulate the behavior of surface forest fires was developed on the basis of forest fire growth prediction algorithm. This model consists of three modules for data-handling, simulation and report writing. The data-handling module was designed to interpret such forest fire environment factors as terrain, fuel and weather and provide sets of data required in analyzing fire behavior. The simulation module simulates the fire and determines spread velocity, fire intensity and burnt area over time associated with terrain slope, wind, effective humidity and such fuel condition factors as fuel depth, fuel loading and moisture content for fire extinction. The module is equipped with the functions to infer the fuel condition factors from the information extracted from digital vegetation map sand the fuel moisture from the weather conditions including effective humidity, maximum temperature, precipitation and hourly irradiation. The report writer has the function to provide results of a series of analyses for fire prediction. A performance test of the model with the 2002 Chungyang forest fire showed the predictive accuracy of 61% in spread rate.

Survival Analysis of Forest Fire-Damaged Korean Red Pine (Pinus densiflora) using the Cox's Proportional Hazard Model (콕스 비례위험모형을 이용한 산불피해 소나무의 생존분석)

  • Jeong Hyeon Bae;Yu Gyeong Jung;Su Jung Ahn;Won Seok Kang;Young Geun Lee
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.2
    • /
    • pp.187-197
    • /
    • 2024
  • In this study, we aimed to identify the factors influencing post-fire mortality in Korean red pine (Pinus densiflora) using Cox's proportional hazards model and analyze the impact of these factors. We monitored the mortality rate of fire-damaged pine trees for seven years after a forest fire. Our survival analysis revealed that the risk of mortality increased with higher values of the delta normalized difference vegetation index (dNDVI), delat normalized burn ratio (dNBR), bark scorch index (BSI), bark scorch height (BSH) and slope. Conversely, the risk of mortality decreased with higher elevation, greater diameter at breast height (DBH), and higher value of delta moisture stress index (dMSI) (p < 0.01). Verification of the proportional hazards assumption for each variable showed that all factors, except slope aspect, were suitable for the model and significantly influenced fire occurrence. Among the variables, BSI caused the greatest change in the survival curves (p < 0.0001). The environmental change factors determined through remote sensing also significantly influenced the survival rates (p < 0.0001). These results will be useful in establishing restoration plans considering the potential mortality risk of Korean red pine after a forest fire.

Development of Large Fire Judgement Model Using Logistic Regression Equation (로지스틱 회귀식을 이용한 대형산불판정 모형 개발)

  • Lee, Byungdoo;Kim, Kyongha
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.3
    • /
    • pp.415-419
    • /
    • 2013
  • To mitigate forest fire damage, it is needed to concentrate suppression resources on the fire having a high probability to become large in the initial stage. The objective of this study is to develop the large fire judgement model which can estimate large fire possibility index between the fire size and the related factors such as weather, terrain, and fuel. The results of logistic regression equation indicated that temperature, wind speed, continuous drought days, slope variance, forest area were related to the large fire possibility positively but elevation has negative relationship. This model may help decision-making about size of suppression resources, local residents evacuation and suppression priority.

A study on the assessment of wildland fire hazard through statistic examination and calorie analysis according to the geographical distribution of vegetation (통계적 고찰과 수목분포에 따른 열량분석을 통한 산림화재 위험성 평가에 관한 연구)

  • 김광일;김동현
    • Fire Science and Engineering
    • /
    • v.14 no.3
    • /
    • pp.27-32
    • /
    • 2000
  • The assessment of wildland fire hazard is the first priority to be considered in the prevention, extinction and control of wildland fire. For the standard to measure wildland fire hazard, the wildland fire Warning System is currently being used in Korea which computes the wildland fire occurrence hazard index through a stick weight to moisture conversion formula. It shows the risk of fuel substance being exposed to fire by meteorological factors. For a comprehensive assessment of wildland fire hazards by area, the major factors'hazards need to be measured and the assessment of wildland fire needs to be conducted through historical statistic examination. Therefore, the wildland (ire outbreak frequency and its seriousness of damage are analyzed through historical statistic examination to conduct the assessment of a wildland fire hazard, and then the calorific value of a forest is analyzed through differential scanning calorimeter measurement which assesses the comparative calorific hazard according to the geographical distribution of vegetation.

  • PDF

Effects of Vegetation Recovery for Surface Runoff and Soil Erosion in Burned Mountains, Yangyang (양양 산불지역 지표유출 및 토양침식에 대한 식생회복의 영향)

  • Shin, Seung Sook;Park, Sang Deog;Cho, Jae Woong;Lee, Kyu Song
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4B
    • /
    • pp.393-403
    • /
    • 2008
  • While characteristics of topography, soil, and vegetation coverage were surveyed, also surface runoff and soil erosion for each rainfall event were measured to analyze effect of change of land cover conditions in mountain areas, Yangyang, directly after wildfire. Fifteen rainfall events were taken in total during the survey period. The result of this survey appeared that the amount of surface runoff and soil erosion are a great difference between plots with rapidly recovered vegetation and bare plots after wildfire. The burned plots where vegetation recovered rapidly generated two times or more of surface runoff and soil erosion than control plots, as burned plots with bare soil showed about ten times of surface runoff and sediment than control plots. The result of correlation analysis between main parameters of the surface runoff and soil erosion presented that rainfall factors and vegetation factors had significant effects on runoff and soil erosion. The sensitivity of runoff and soil erosion showed specially high correlation with vegetation indices. If the land surface disturbed by wildfire are recovered by natural vegetation as time passes, runoff and soil erosion may be decreased gradually. Because runoff and soil erosion in the areas with rare vegetation or bare soil are generated continuously, the discriminated mediation strategies would be established as condition of each region.

Developing Korean Forest Fire Occurrence Probability Model Reflecting Climate Change in the Spring of 2000s (2000년대 기후변화를 반영한 봄철 산불발생확률모형 개발)

  • Won, Myoungsoo;Yoon, Sukhee;Jang, Keunchang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.199-207
    • /
    • 2016
  • This study was conducted to develop a forest fire occurrence model using meteorological characteristics for practical forecasting of forest fire danger rate by reflecting the climate change for the time period of 2000yrs. Forest fire in South Korea is highly influenced by humidity, wind speed, temperature, and precipitation. To effectively forecast forest fire occurrence, we developed a forest fire danger rating model using weather factors associated with forest fire in 2000yrs. Forest fire occurrence patterns were investigated statistically to develop a forest fire danger rating index using times series weather data sets collected from 76 meteorological observation centers. The data sets were used for 11 years from 2000 to 2010. Development of the national forest fire occurrence probability model used a logistic regression analysis with forest fire occurrence data and meteorological variables. Nine probability models for individual nine provinces including Jeju Island have been developed. The results of the statistical analysis show that the logistic models (p<0.05) strongly depends on the effective and relative humidity, temperature, wind speed, and rainfall. The results of verification showed that the probability of randomly selected fires ranges from 0.687 to 0.981, which represent a relatively high accuracy of the developed model. These findings may be beneficial to the policy makers in South Korea for the prevention of forest fires.

Analysis of the Spatial Distribution for Forest Fire Areas using GSIS (GSIS에 의한 산불 피해 지점의 공간 분포 분석)

  • Yang, In-Tae;Yeu, Young-Geol;Choi, Seung-Pil;Kim, Eung-Nam
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.7 no.2 s.14
    • /
    • pp.93-100
    • /
    • 1999
  • Forest fires have been threats to natural resources, endangered species, properties and even to human lives. Efficient management of forest fires requires a complete understanding of the environmental and human related activities, as well as complicate spatial relationships among them. A geo-spatial information system(GSIS) is an appropriate method of being able to mapping and to analyze the spatial data for forest fires. Therefore, this study is to provide and classify the terrain, vegetation, life environment soil and geology factors, and to analyze spatial distribution for forest fire areas by applying the GSIS and the Remote Sensing technology. On the other hands, causes of increasing numbers of forest fires being occurred after In were assessed by comparing the normalized difference vegetation index((NDVI).

  • PDF

Evaluating meteorological and hydrological impacts on forest fire occurrences using partial least squares-structural equation modeling: a case of Gyeonggi-do (부분최소제곱 구조방정식모형을 이용한 경기도 지역 산불 발생 요인에 대한 기상 및 수문학적 요인의 영향 분석)

  • Kim, Dongwook;Yoo, Jiyoung;Son, Ho Jun;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.3
    • /
    • pp.145-156
    • /
    • 2021
  • Forest fires have frequently occurred around the world, and the damages are increasing. In Korea, most forest fires are initiated by human activities, but climate factors such as temperature, humidity, and wind speed have a great impact on combustion environment of forest fires. In this study, therefore, based on statistics of forest fires in Gyeonggi-do over the past five years, meteorological and hydrological factors (i.e., temperature, humidity, wind speed, precipitation, and drought) were selected in order to quantitatively investigate causal relationships with forest fire. We applied a partial least squares structural equation model (PLS-SEM), which is suitable for analyzing causality and predicting latent variables. The overall results indicated that the measurement and structural models of the PLS-SEM were statistically significant for all evaluation criteria, and meteorological factors such as humidity, temperature, and wind speed affected by amount of -0.42, 0.23 and 0.15 of standardized path coefficient, respectively, on forest fires, whereas hydrological factor such as drought had an effect of 0.23 on forest fires. Therefore, as a practical method, the suggested model can be used for analyzing and evaluating influencing factors of forest fire and also for planning response and preparation of forest fire disasters.

Properties of the Variation of Fe and Mn in the Vicinity of Soil Affected by Forest Fire for the Development of Technics that Reduces Forest Fire-induced 2nd Damage from Gangwon Provinces, Korea (2차산불피해저감기술개발을 위한 강원도 산불지토양 중 Fe-Mn원소의 분포특성)

  • 오근창;양동윤;김주영;남욱현;윤정한
    • Economic and Environmental Geology
    • /
    • v.35 no.3
    • /
    • pp.285-297
    • /
    • 2002
  • This study was carried out to prove the factor properties of the soil affected by a forest fire through the physical and chemical analysis and the data from the conclusion of those analysis are applied to the development of technics that reduces a forest fire-induced 2nd damage. The forest fire was in December 2000 at Gangreung city and Donghae city, Gangwon provinces, Korea. Soil samples were collected at upper layers (0-5 cm) and bottom layers (5-40 cm) in November 2001 from the burned and control sites. Values of pH in burned soils of the upper layers affected by forest fire are higher than those in control soils. Both the fragments of fire-burned plant and differences of geological properties are resulted in a class of soil. Contents of organic matters in burned soils are higher than those in control soils, exceptionally the contents of organic matters in burned soils that contain coaly shale are lower than those in control soils. Weathering indices in burned soils are higher than those in control soils and it concerned with loss of soil. Iron ions Fe(Fe$^{2+}$ or Fe$^{3+}$) are easily extracted from the burned soils by rainfall, but Mn ions are straightly exist in the burned soils by physiochemical adsorption of colloid. Through the sequential extraction in the burned soils and control soils, we are certificate the extraction of Fe ions and the disturbance of Mn ions from the burned soils. As a consequence of factor analysis in burned soil and control soil, we are certificate that the influence of forest fire results in a disturbance of positive correlation factors.