• Title/Summary/Keyword: 산림의 탄소 흡수량

Search Result 68, Processing Time 0.026 seconds

Estimating Greenhouse Gas (GHG) Removal by Cryptomeria japonica and Chamaecyparis obtusa Stands Using New Stem Volume Tables (신규 입목수간재적표를 활용한 삼나무 및 편백 임분의 온실가스 흡수량 추정)

  • Min Woo Lee;Sun Jeoung Lee;Joung Won You;Jin Taek Kang;Young Jin Lee;Chi Ung Ko
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.4
    • /
    • pp.515-522
    • /
    • 2023
  • The aim of this study was to quantitatively evaluate a new stem volume table for estimating the growth, carbon storage, and greenhouse gas (GHG) absorption in Cryptomeria japonica and Chamaecyparis obtusa stands and to provide suggestions for improving the domestic GHG inventory. Carbon storage and GHG absorption were estimated using growing stock data obtained from invariable sub-sample plots between the 6th and 7th national forest inventories. We assessed changes in growing stock using the parameters employed by Kozak (1988) and Versions 1 and 2 of the stem volume table. Version 2 has new stem tables for 16 species, including Cryptomeria japonica, which were unavailable in Version 1. Version 2 also includes new data for trees with diameters at breast height equal to or greater than 30 cm. We found greater growing stock values using Version 2 than Version 1 for both stands, and the differences were statistically significant (p<0.001). Applying the new stem volume table increased GHG absorption by 22% for the Cryptomeria japonica stand and 13% for the Chamaecyparis obtusa stand. The growing stock estimation method used in this study should therefore be applied to re-estimate GHG absorptions in the forestry sector to produce accurate statistics for the IPCC guidelines.

Mapping and estimating forest carbon absorption using time-series MODIS imagery in South Korea (시계열 MODIS 영상자료를 이용한 산림의 연간 탄소 흡수량 지도 작성)

  • Cha, Su-Young;Pi, Ung-Hwan;Park, Chong-Hwa
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.5
    • /
    • pp.517-525
    • /
    • 2013
  • Time-series data of Normal Difference Vegetation Index (NDVI) obtained by the Moderate-resolution Imaging Spectroradiometer(MODIS) satellite imagery gives a waveform that reveals the characteristics of the phenology. The waveform can be decomposed into harmonics of various periods by the Fourier transformation. The resulting $n^{th}$ harmonics represent the amount of NDVI change in a period of a year divided by n. The values of each harmonics or their relative relation have been used to classify the vegetation species and to build a vegetation map. Here, we propose a method to estimate the annual amount of carbon absorbed on the forest from the $1^{st}$ harmonic NDVI value. The $1^{st}$ harmonic value represents the amount of growth of the leaves. By the allometric equation of trees, the growth of leaves can be considered to be proportional to the total amount of carbon absorption. We compared the $1^{st}$ harmonic NDVI values of the 6220 sample points with the reference data of the carbon absorption obtained by the field survey in the forest of South Korea. The $1^{st}$ harmonic values were roughly proportional to the amount of carbon absorption irrespective of the species and ages of the vegetation. The resulting proportionality constant between the carbon absorption and the $1^{st}$ harmonic value was 236 tCO2/5.29ha/year. The total amount of carbon dioxide absorption in the forest of South Korea over the last ten years has been estimated to be about 56 million ton, and this coincides with the previous reports obtained by other methods. Considering that the amount of the carbon absorption becomes a kind of currency like carbon credit, our method is very useful due to its generality.

Development of forest carbon optimization program using simulated annealing heuristic algorithm (Simulated Annealing 휴리스틱 기법을 이용한 임분탄소 최적화 프로그램의 개발)

  • Jeon, Eo-Jin;Kim, Young-Hwan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2013.07a
    • /
    • pp.423-426
    • /
    • 2013
  • 본 연구에서는 임분 단위에서 산림의 이산화탄소 흡수 및 저장 기능을 최적화 할 수 있는 최적의 산림시업체계를 도출하고자하였고, 이를 위해 임분 생장모델과 Simulated Annealing 휴리스틱 기법을 적용하여 임분탄소 최적화 프로그램을 개발하였다. 휴리스틱 알고리즘에서 최적해를 찾기 위해 반복 실행 되는 과정에서 더 이상 최적해을 찾지 못하고 목표 값이 어떤 일정한 값(Local Optimum)에 계속 머무는 현상을 해결하기 위해 임계치를 적용하며, SA 휴리스틱 기법에서는 열균형테스트를 이용하고 있다. 개발된 프로그램을 이용하여 3가지 산림 시업 시나리오에 대한 비교 분석을 실시하기 위해 프로그램을 실행한 결과, 목재수확량의 경우 목재수확량을 최대를 목표로 한 대안이 3개 시나리오 가운데 목재수확량이 가장 높은 것으로 나타났으며, 또한 탄소저장량에서도 탄소저장량을 최적화한 대안이가 탄소저장량이 가장 높은 것으로 나타나 프로그램이 목적에 맞게 개발된 것으로 판단됐다. 또한 열균형 테스트의 온도저감율을 조정하여 프로그램을 반복실행하여 온도저감율이 프로그램 실행 시에 미치는 영향을 분석한 결과 온도저감율에 따라 출력되는 목적함수의 최적값과 프로그램 반복횟수가 영향을 받는 것으로 나타나 프로그램 실행을 최적으로 하기위해 온도 저감율의 파라미터 값을 0.1로 설정하였다.

  • PDF

An Estimation of Carbon Stocks in Harvested Wood Products in Korean Houses (우리나라 주택분야 내 목제품의 탄소저장량 추정)

  • Choi, Soo Im;Joo, Rin Won
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.4
    • /
    • pp.708-714
    • /
    • 2011
  • Wood store carbon that the forest absorbed until burned or decomposed over a long period. Such materials are most used in houses except in paper and pulp, and the use of wood in houses play an important role in reducing green-house gases. Therefore, we estimated the amount of carbon stocks in Korean houses, and analyzed how much contribution such stocks offers to green-house gas reduction. As the result, the carbon stocks amount of the wood products in Korean houses was 28.4 million $tCO_2$, which is 4.6% of the total annual green-house gas emission in Korea (620 million $tCO_2$ e), and 77.4% of forest sinks (LULUCF). Even though few wooden houses which use most wood in housing exist in Korea, the carbon stocks of wood products in houses in 2010 increased to 4.1 times that in 1975 (21.4 million $tCO_2$) because the carbon stocks increased due to apartment construction, which hit its stride from the last 1980's.

The Changes in Carbon Stocks and Emissions Assessment of Harvested Wood Products in Korea (우리나라의 수확된 목제품 탄소축적 변화량 및 배출량 평가)

  • Choi, Soo Im;Kang, Hag Mo
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.6
    • /
    • pp.644-651
    • /
    • 2007
  • This study compared and estimated the changes in carbon stocks and emissions of harvested wood products (HWP) by applying FAO statistics and domestic statistics for Korean HWP production, import, and export volume, which is almost always supposed to be included in the carbon emissions and removals inventory by country in negotiations since the 2nd commitment period (2013~2017) of the Kyoto Protocol, for assessing the changes in carbon stocks and emissions of HWP. As a result, when applying FAO statistics to the changes in carbon stocks of HWP as of 2005, stock-change approach (SCA) was estimated at 1.434 Tg C, atmospheric-flow approach (AFA) -1.330 Tg C, and production approach (PA) 0.597 Tg C. When applying Korean statistics, SCA was estimated at 1.246 Tg C, AFA -11.520 Tg C, and PA 0.444 Tg C. When applying FAO statistics to $CO_2$ emissions and removals from HWP, SCA showed a decrease of $-5,258Gg\;CO_2$ (removals), AFA showed an increase of $4,877Gg\;CO_2$ (emissions), and PA showed a decrease of $-2,189Gg\;CO_2$ (removals). When applying Korean statistics, SCA showed a decrease of $-4,569Gg\;CO_2$ (removals), AFA showed an increase of $5,573Gg\;CO_2$ (emissions), and PA showed a decrease of $-1,628Gg\;CO_2$, (removals). Therefore, the application of FAO statistics was shown to be more beneficial for the estimation of both the changes in carbon stocks and emissions of HWP by all methods other than that of Korean statistics.

Gridded Expansion of Forest Flux Observations and Mapping of Daily CO2 Absorption by the Forests in Korea Using Numerical Weather Prediction Data and Satellite Images (국지예보모델과 위성영상을 이용한 극상림 플럭스 관측의 공간연속면 확장 및 우리나라 산림의 일일 탄소흡수능 격자자료 산출)

  • Kim, Gunah;Cho, Jaeil;Kang, Minseok;Lee, Bora;Kim, Eun-Sook;Choi, Chuluong;Lee, Hanlim;Lee, Taeyun;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1449-1463
    • /
    • 2020
  • As recent global warming and climate changes become more serious, the importance of CO2 absorption by forests is increasing to cope with the greenhouse gas issues. According to the UN Framework Convention on Climate Change, it is required to calculate national CO2 absorptions at the local level in a more scientific and rigorous manner. This paper presents the gridded expansion of forest flux observations and mapping of daily CO2 absorption by the forests in Korea using numerical weather prediction data and satellite images. To consider the sensitive daily changes of plant photosynthesis, we built a machine learning model to retrieve the daily RACA (reference amount of CO2 absorption) by referring to the climax forest in Gwangneung and adopted the NIFoS (National Institute of Forest Science) lookup table for the CO2 absorption by forest type and age to produce the daily AACA (actual amount of CO2 absorption) raster data with the spatial variation of the forests in Korea. In the experiment for the 1,095 days between Jan 1, 2013 and Dec 31, 2015, our RACA retrieval model showed high accuracy with a correlation coefficient of 0.948. To achieve the tier 3 daily statistics for AACA, long-term and detailed forest surveying should be combined with the model in the future.

Change Analysis of Aboveground Forest Carbon Stocks According to the Land Cover Change Using Multi-Temporal Landsat TM Images and Machine Learning Algorithms (다시기 Landsat TM 영상과 기계학습을 이용한 토지피복변화에 따른 산림탄소저장량 변화 분석)

  • LEE, Jung-Hee;IM, Jung-Ho;KIM, Kyoung-Min;HEO, Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.4
    • /
    • pp.81-99
    • /
    • 2015
  • The acceleration of global warming has required better understanding of carbon cycles over local and regional areas such as the Korean peninsula. Since forests serve as a carbon sink, which stores a large amount of terrestrial carbon, there has been a demand to accurately estimate such forest carbon sequestration. In Korea, the National Forest Inventory(NFI) has been used to estimate the forest carbon stocks based on the amount of growing stocks per hectare measured at sampled location. However, as such data are based on point(i.e., plot) measurements, it is difficult to identify spatial distribution of forest carbon stocks. This study focuses on urban areas, which have limited number of NFI samples and have shown rapid land cover change, to estimate grid-based forest carbon stocks based on UNFCCC Approach 3 and Tier 3. Land cover change and forest carbon stocks were estimated using Landsat 5 TM data acquired in 1991, 1992, 2010, and 2011, high resolution airborne images, and the 3rd, 5th~6th NFI data. Machine learning techniques(i.e., random forest and support vector machines/regression) were used for land cover change classification and forest carbon stock estimation. Forest carbon stocks were estimated using reflectance, band ratios, vegetation indices, and topographical indices. Results showed that 33.23tonC/ha of carbon was sequestrated on the unchanged forest areas between 1991 and 2010, while 36.83 tonC/ha of carbon was sequestrated on the areas changed from other land-use types to forests. A total of 7.35 tonC/ha of carbon was released on the areas changed from forests to other land-use types. This study was a good chance to understand the quantitative forest carbon stock change according to the land cover change. Moreover the result of this study can contribute to the effective forest management.

Carbon Storage and Uptake by Evergreen Trees for Urban Landscape - For Pinus densiflora and Pinus koraiensis - (도시 상록 조경수의 탄소저장 및 흡수 - 소나무와 잣나무를 대상으로 -)

  • Jo, Hyun-Kil;Kim, Jin-Young;Park, Hye-Mi
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.5
    • /
    • pp.571-578
    • /
    • 2013
  • This study generated regression models through a direct harvesting method to estimate carbon storage and uptake by Pinus densiflora and Pinus koraiensis, the major evergreen tree species in urban landscape, and established essential information to quantify carbon reduction by urban trees. Open-grown landscape tree individuals for each species were sampled reflecting various diameter sizes at a given interval. The study measured biomass for each part including the roots of sample trees to compute the total carbon storage per tree. Annual carbon uptake per tree was quantified by analyzing radial growth rates of stem samples at breast height. The study then derived a regression model easily applicable in estimating carbon storage and uptake per tree for the two species by using diameter at breast height (DBH) as an independent variable. All the regression models showed high fitness with $r^2$ values of higher than 0.98. While carbon storage and uptake by young trees tended to be greater for P. densiflora than for P. koraiensis in the same diameter sizes, those by mature trees with DBH sizes of larger than 20 cm showed results to the contrary due to a difference in growth rates. A tree of P. densiflora and P. koraiensis with DBH of 25 cm stored 115.6 kg and 130.0 kg of carbon, respectively, and annually sequestered 9.4 kg and 14.6 kg. The study has broken new grounds to overcome limitations of the past studies which quantified carbon reduction of the study species by substituting, due to a difficulty in direct cutting and root digging of landscape trees, coefficients from forest trees such as biomass expansion factors, ratios of below ground/above ground biomass, and diameter growth rates.

Estimation of Stand Yield and Carbon Stock for Robinia pseudoacacia Stands in Korea (아까시나무 임분의 임목수확량 및 탄소저장량 추정)

  • Son, Yeong Mo;Kim, So Won;Lee, Sun Jeoung;Kim, Jeong Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.2
    • /
    • pp.264-269
    • /
    • 2014
  • The aim of this study was to determine the current distribution area of Robinia pseudoacacia habitat and to estimate its stand yield as well as its carbon stocks. In order to do so, the area of R. pseudoacacia distribution is obtained based on the large-scaled forest type map (1:5,000). Also, Weibull diameter distribution model is used to predict the yield of R. pseudoacacia stands. In addition, carbon emission factor is applied to calculate carbon stocks and removals. To obtain the stand yield of R. pseudoacacia, we developed estimation equation considering growth factors of the stand, e.g. mean diameter, the basal area, maximum and minimun diameter and etc. and tested it to ensure accuracy. Consequently, estimation equation derived from all growth factors have shown significance that could also be used for analysis. Site index was also established to determine the productivity of the forestland that later turned out to be ranging from 16 to 22. Based on these results, stand yield tables were drawn up. R. pseudoacacia is widely distributed in inland areas of Gyeongsang, Chungcheong and Gyeonggi provinces which covers total area of 26,770 ha. And when it is converted into carbon stocks, it amounts to 2,517,598tC with annual carbon uptake of 3.76tC/ha which is comparable to Querqus species that is known to storer large amounts of carbon. Therefore, R. pseudoacacia is also expected to serve as a viable carbon pool that would contribute to the mitigation of climate change. Furthermore, stand yield tables, an outcome of this survey would assist not only in proper management but also in sustainable management policy of R. pseudoacacia.

Aboveground and Soil Organic Carbon Storage of a Pinus rigida stand in Kwangnung (경기도 광릉 리기다소나무임분의 탄소저장량 변화)

  • Kim, Chun-Sik;Koo, Gyo-Sang;Choi, Gyung;Oh, Jung-Su
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.04a
    • /
    • pp.373-374
    • /
    • 2000
  • 최근 대기중 이산화탄소함량의 증가는 지구온난화의 관점에서 상당한 주목을 받고 있으며 이산화탄소의 흡수저장 능력을 가진 산림내 탄소저장능력에 대한 관심을 증가하고있다(Vitousek, 1991; Alban 과 Perala, 1992). 주로 유기물로 존재하는 산림생태계내 유기탄소는 지구탄소순환에 크게 기여할 뿐만 아니라 토양 이화학적 특성과 밀접한 관련을 가지는 것으로 알려져 있다(Alban 과 Pelara 1992). 본 연구는 경기도 광릉에 위치한 밀도와 지위가 다른 31년생의 성숙한 리기다소나무임분을 대상으로 탄소저장량과 년 탄소증가량이 어느 정도 되는지를 알아보기 위해서 실시하였다.(중략)

  • PDF