• Title/Summary/Keyword: 사질토

Search Result 563, Processing Time 0.037 seconds

Analysis of Diameter Effects on Skin Friction of Drilled Shafts in Sand (사질토 지반에 설치된 현장타설말뚝의 말뚝지름에 따른 주면마찰력 분석)

  • Lee, Sung-June
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.1
    • /
    • pp.161-170
    • /
    • 2013
  • In this paper, numerical pile segment analysis is conducted with an advanced soil elastoplastic model to investigate the diameter effects on skin friction behaviour of a drilled shaft in sand. Ultimate skin friction and 't-z' behavior from the pile segment analyses for drilled shafts show good agreement with those from design methods. Higher ultimate skin friction for the smaller diameter pile is related to the greater increase in the effective radial stress at the interface due to the localized dilation at and near the pile interface. Stiffer t-z curve for the smaller diameter pile is related to the early occurrence of three shear stages (early, dilation, constant volume shear stages). The diameter effects on ultimate skin friction of drilled shafts are more prominent for denser sand and lower confining pressure.

Influence Factors on the Degree of Soil Plugging for Open-Ended Piles (개단말뚝의 폐색효과 영향인자 분석)

  • Jeong, Sang-Seom;Ko, Jun-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.5
    • /
    • pp.27-36
    • /
    • 2016
  • This paper presents the investigation of the major influence factors on the degree of soil plugging for open-ended piles based on the Coupled Eulerian-Lagrangian (CEL) numerical technique. The main objective of this study was to investigate the effect of soil plugging on the response of piles in various conditions. Through comparison of the results of field load tests, the CEL methodology was found to be in good agreement with the general trend observed by in situ measurement. Additionally, the parametric studies were performed by controlling the soil conditions, soil elastic moduli, end-bearing conditions and multi layers. It was found that the degree of soil plugging for sand layers was greater than that of clay layers. Also, the degree of soil plugging increased with an increase in both the soil stiffness and length of pile embedded in the bearing layer.

A study on the new supporting system using steel ribs in sandy soil (사질토 지반에서 강지보를 고려한 신개념 지보시스템에 대한 연구)

  • Kim, Sang-Hwan;Kim, Ji-Tae;Kang, Jun-Gu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.5
    • /
    • pp.395-411
    • /
    • 2011
  • This paper presents a new supporting system using steel ribs. In order to perform this research, experimental and numerical studies were performed. In the experimental study, the scaled model tests for the new supporting system consisting of the steel ribs and rock bolts were carried and compared with the conventional existing supporting system. The numerical simulation was carried out to evaluate the new supporting system to verify the experimental results. It was found that the new tunnel supporting system will reduce the tunnel damage.

The Stress-Strain Behavior of a Pure Silt Compared with Sand and Clay (사질토 및 점성토와 비교한 순수 실트의 응력 -변형률 거동)

  • 정상섬
    • Geotechnical Engineering
    • /
    • v.9 no.4
    • /
    • pp.27-36
    • /
    • 1993
  • The drained and undrained behavior of pure silt was investigated experimentally. Special attention was given to the stress-strain behavior of silt prior to failure and behavior at failure under monotonic and cyclic loading. A pure silica flour was chosen to form samples with two different densities of D,=80%, eo=0.68 and D,=35%, eo=0.9. The isotropically consolidated samples were tested in the triaxial testing device under monotonic undrained, drained compression and extension conditions. Also samples were tested under cyclic undrained condition. Based on the experimental results. it was qualitively identified that the overall behavior of silt is similar to that of sand. When compared with clay, silt shows a significantly different behavior due to its dilatant nature under both the monotonic and cyclic shear loadings.

  • PDF

Dynamic Deformation Characteristics of Sands Under Various Drainage Conditions (배추 조건에 따른 사질토 지반의 동적 변형특성)

  • Choo Yun-Wook;Kim Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.27-42
    • /
    • 2005
  • In this study, dynamic deformation characteristics of sands under dry, saturated drained and undrained conditions were investigated at small to intermediate strains using the modified Stokoe-type torsional shear tests. The equipment was modified to saturate the specimen and to maintain the B-value above 0.99 during the test. On two types of sands, Geumgang sand from Korea and Toyoura sand from Japan, tests were carried out at various drainage conditions, void ratios, and effective confining pressures. Based on the test results, dynamic deformation characteristics, shear modulus (G) and damping ratio (D), and/or pore-water pressure were measured with strain amplitude and number of loading cycles. Variations of G and D at small ($\gamma_c<{10}^{-3}\%$) to medium (${10}^{-3}\%<\gamma_c<{10}^{-1}\%$) strains were measured under various drainage conditions, and test results were intensively compared considering drainage conditions.

Relative Contribution of Organic Matter and Clay Content to Cation Exchange Capacity in Sandy Soils (사질토(砂質土)에서 염기치환용량(鹽基置換容量)에 대한 유기물(有機物)과 점토(粘土)의 상대기여도(相對寄與度))

  • Park, Chang-Seo;Jung, Kwang-Young;Kim, Jai-Joung;Cho, Seong-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.4
    • /
    • pp.337-342
    • /
    • 1984
  • 224 profiles representing 19 soil series were subjected to multiple regresion analysis to determine the relative contribution of organic matter(OM) and clay content to total cation exchange capacity(CEC) in sandy soil. The independent variables were OM and clay, with the dependent variable CEC. Simple correlation coefficients showed high significance at CEC-OM and CEC-clay. The partial regression coefficients indicated that CEC for each gram of OM was calculated to be 0.549 and 1.351 meq of top and subsoil. The clay contributions of top and subsoil were 0.247 and 0.226 meq, respectively. The standard partial regression coefficients appeared that clay content was 1.23 times as important as orgnic matter in predicting CEC.

  • PDF

Accumulated Rotations of Suction Bucket Foundations under Long-term Cyclic Loads in Dry Sandy Ground (건조 사질토 지반에 설치된 석션 버켓기초의 장기 반복하중에 의한 누적회전각 산정)

  • Lee, Si-Hoon;Choi, Changho;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.12
    • /
    • pp.69-78
    • /
    • 2016
  • A suction bucket foundation has been considered to be a potential foundation type for offshore wind turbines. A suction bucket foundation is usually installed in soft soil, so the accumulated displacement of the foundation may occur under long-term cyclic loads. In this study, a series of 1-g model tests were performed to analyze the accumulated rotation of suction bucket foundations under long-term cyclic horizontal loads. The dry model ground was prepared to have two different soil densities by air-pluviation method. The model tests were performed varying the embedment depth of the suction bucket, the soil density, and the amplitude of cyclic load. A one-way horizontal cyclic load was applied over $10^4$ cycles. Test results showed that the accumulated rotation of the suction bucket foundation increased with the increase in the number of cycles and load magnitudes. Based on the model test results, a new equation was proposed to evaluate the accumulated rotation of the suction bucket foundations in dry sandy ground under long-term cyclic horizontal loads.

Pull-out Capacity of Screw Anchor Pile in Sand Using Reduced-Scale Model Tests (축소모형실험을 이용한 사질토 지반에 근입된 Screw Anchor Pile의 인발저항특성)

  • Kim, Dae-Hyun;Yoo, Chung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.1
    • /
    • pp.121-133
    • /
    • 2013
  • This paper presents the results of an investigation into the pull-out capacity characteristics of screw anchor piles. Theoretical background of screw anchor pile (SAP) was first discussed. A series of reduced-scale model tests were performed on a number of cases with different SAP geometries such as pitch and diameter of screw as well as relative density of the model ground. The applicability of the pull-out capacity prediction equations were also examined based on the test results. It was shown that the pitch of screw has negligible effect on the pull-out capacity, while the diameter of screw has relatively large effect on pull-out capacity under a given condition. Practical implications of the findings from this study are discussed in great detail.

Study on the Determination of the Maximum Injection Pressure for Groundwater Rechargement (지하수 함양시 최대 주입압력 결정을 위한 연구)

  • Choi, Jin O;Jeong, Hyeon Cheol;Chung, Choong Ki;Kim, Chang Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.4
    • /
    • pp.501-508
    • /
    • 2022
  • Required essential technique is to determine the maximum recharge pressure in the well with condition of non-ground failure for the recovery of the groundwater. Based on the classical soil mechanics, the maximum recharge pressure was estimated with the numerical anlaysis and laboratory triaxial test. In the numerical analysis, the maximum recharge pressure is defined as the ground failure stress. The ground failure of the sand was defined as the piping and the one of the caly was to the undrained failure by the confined pressure increment. In the triaxial test, the recharge pressure in the ground was modified by the back pressure in the specimen. In case of sand, the volume strain was dramatically increased at the 93 % of the maximum back pressure, same meaning of the 0 effective stress state. In case of clay, the only radial volume strain was to reached 1.5 % without failure. Therefore, The maximum recharge pressure could be determined with the numerical analysis and triaxial test.

Evaluation of Freezing Patterns for Sand and Clay by Using X-ray CT (X-ray CT를 통한 사질토와 점성토의 간극수 동결 패턴 분석)

  • Song, Jun Young;Lee, Jangguen;Lee, Seong-Won;Lee, Junhwan;Yun, Tae Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.3
    • /
    • pp.57-65
    • /
    • 2018
  • This study adopts high resolution 3D X-ray CT imaging technique to visualize and evaluate the internal structure of experimentally frozen soils. Temperature and elastic wave velocity are also measured during the freezing process. The X-ray images of frozen specimens reveal that no changes in internal structure are observed for sand specimen, whereas systematic growth pattern of pore ice is observed within clay specimen. The freezing patterns are then quantified by a set of X-ray images with the aid of two-point correlation method by computing characteristic length Lr. The results reveal that characteristic length for pore ice freezing pattern in clay linearly increases with respect to the distance from the cooling source, so that Lr at the bottom layer is 2.5 times greater than the top layer when freezing process is completed. Furthermore, during the freezing process, local temperature differences are not observed in sand, but observed in clay specimen due to its relatively low thermal conductivity.