• Title/Summary/Keyword: 사전 처리 단계

검색결과 257건 처리시간 0.025초

띄어쓰기 및 철자 오류 동시교정을 위한 통계적 모델 (A joint statistical model for word spacing and spelling error correction)

  • 노형종;차정원;이근배
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2006년도 제18회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.25-31
    • /
    • 2006
  • 본 논문에서는 띄어쓰기 오류와 철자 오류를 동시에 교정 가능한 전처리기를 제안한다. 제시된 알고리즘은 기존의 전처리기 알고리즘이 각 오류를 따로 해결하는 데에서 오는 한계를 극복하고, 기존의 noisy-channel model을 확장하여 대화체의 띄어쓰기 오류와 철자오류를 동시에 효과적으로 교정할 수 있다. N-gram과 자소변환확률 등의 통계적 방법과 어절변환패턴 사전을 이용하여 최대한 사전을 적게 이용하면서도 효과적으로 교정 후보들을 생성할 수 있다. 실험을 통해 현재 단계에서는 만족할 만한 성능을 얻지는 못하였지만 오류 분석을 통하여 이와 같은 방법론이 실제로 효용성이 있음을 알 수 있었고 앞으로 더 많은 개선을 통해 일상적인 대화체 문장에 대해서 효과적인 전처리기로서 기능할 수 있을 것으로 기대 된다.

  • PDF

맵리듀스기반 워크플로우 빅-로그 클러스터링 기법 (A MapReduce-Based Workflow BIG-Log Clustering Technique)

  • 진민혁;김광훈
    • 인터넷정보학회논문지
    • /
    • 제20권1호
    • /
    • pp.87-96
    • /
    • 2019
  • 본 논문에서는 분산 워크플로우 실행 이벤트 로그를 수집하고 분류하기 위한 사전 처리 도구로서 맵-리듀스기반 클러스터링 기법을 제안한다. 특히 우리는 볼륨, 속도, 다양성, 진실성 및 가치와 같은 BIG 데이터의 5V 속성에 만족하고 잘 충족되어 있기 때문에 분산 워크플로우 실행 이벤트 로그를 특별히 워크플로우 빅-로그(Workflow BIG-Logs)라고 정의한다. 이 논문에서 개발하는 클러스터링 기술은워크플로우 빅-로그를 기반으로 하는 특정 워크플로 프로세스 마이닝 및 분석 알고리즘의 사전 처리 단계에 적용하기 위한 목적으로 고안된 것이다. 즉, 맵리듀스(Map-Reduce) 프레임워크를 워크플로우 빅-로그 처리 플랫폼으로 사용하고, IEEE XES 표준 데이터 형식을 지원하며, 결국 본 연구에서 개발중에 있는 구조적 정보제어넷기반 워크플로우 프로세스 마이닝 알고리즘인 ${\rho}$-알고리즘의 사전 처리 단계 전용으로 사용되도록 구현된 것이다. 보다 자세하게 말하자면, 워크플로우 빅-로그의 클러스터링 패턴은 단위업무액티버티 기반 클러스터링 패턴과 단위업무 수행자 기반 클러스터링 패턴으로 분류되는데, 특별히 단위업무 액티버티 패턴의 하나인 시간적 워크케이스 패턴과 그의 발생 건수를 재발견하는 맵리듀스 기반 클러스터링 알고리즘을 설계하고 구현하고자 한다. 마지막으로, 우리는 BPI 챌린지에서 공개한 워크플로우 실행 이벤트 로그 데이터세트에 대해 일련의 실험을 수행함으로써 제안된 클러스터링 기법의 기술적 타당성을 검증한다.

시계열 데이타베이스에서 서브시퀀스 매칭의 성능 병목 : 관찰, 해결 방안, 성능 평가 (The Performance Bottleneck of Subsequence Matching in Time-Series Databases: Observation, Solution, and Performance Evaluation)

  • 김상욱
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제30권4호
    • /
    • pp.381-396
    • /
    • 2003
  • 서브시퀀스 매칭은 주어진 질의 시퀀스와 변화의 추세가 유사한 서브시퀀스들을 시계열 데이타베이스로부터 검색하는 연산이다. 본 논문에서는 서브시퀀스 매칭 처리의 성능 병목을 파악하고, 이를 해결함으로써 전체 서브시퀀스 매칭의 성능을 크게 개선하는 방안에 관하여 논의한다. 먼저, 사전 실험을 통하여 전체 서브시퀀스 매칭의 처리 시간 중 인덱스 검색 단계와 후처리 단계에서 디스크 액세스 시간 및 CPU 처리 시간이 차지하는 비중을 분석한다. 이를 바탕으로 후처리 단계가 서브시퀀스 매칭의 성능 병목이며, 후처리 단계의 최적화가 기존의 서브시퀀스 매칭 기법들이 간과한 매우 중요한 이슈임을 지적한다. 이러한 서브시퀀스 매칭의 성능 병목을 해결하기 위하여 후처리 단계를 최적으로 처리할 수 있는 간단하면서도 매우 효과적인 기법을 제안한다. 제안된 기법은 후처리 단계에서 후보 서브시퀀스들이 질의 시퀀스와 실제로 유사한가를 판단하는 순서를 조정함으로써 기존의 후처리 단계의 처리에서 발생하는 많은 디스크 액세스의 중복과 CPU 처리의 중복을 완전히 제거한 수 있다 제안된 기법이 착오 기각을 발생시키지 않음과 후처리 단계를 처리하기 위한 최적의 기법임을 이론적으로 증명한다. 또한, 실제 데이타와 생성 데이타를 이용한 다양한 실험들을 통하여 제안된 기법의 성능 개선 효과를 정량적으로 검증한다. 실험 결과에 의하면, 제안된 기법은 기존 기법의 후처리 단계 수행 시간을 실제 주식 데이타를 이용한 실험의 경우 ,3.91 배에서 9.42배까지, 대규모의 생성 데이터를 이용한 실험의 경우 4.97 배에서 5.61배까지 개선시키는 것으로 나타났다. 또한, 제안된 기법을 채택함으로써 전체 서브시퀀스 매칭 처리 시간의 90%에 이르던 후처리 단계의 비중을 70%이하로 내릴 수 있었다. 이것은 제안된 기법이 서브시퀀스 매칭의 성능 병목을 성공적으로 해결하였음을 보여주는 것이다. 이 견과, 제안된 기법은 전체 서브시퀀tm 매칭의 성능을 실제 주식 데이타를 사용한 실험의 경우 3.05 배에서 5.60 배까지, 대규모의 생성 데이타를 이용한 실험의 경우 3.68 배에서 4.21 배까지 개선시킬 수 있었다.

구절 변환을 위한 한영 동사 사전 구성 (The Construction of Korean-to-English Verb Dictionary for Phrase-to-Phrase Translations)

  • 옥철영;김영택
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1991년도 제3회 한글 및 한국어정보처리 학술대회
    • /
    • pp.44-57
    • /
    • 1991
  • 변환방식의 기계번역은 변환사전에서 제공하는 정보의 종류와 그의 정밀성에 따라서 변환과정의 복잡도와 번역의 질이 결정되어 진다. 사람에 의한 번역은 양국어 사전에서 제공하는 구절 중심의 번역정보를 이용함으로써, 그 번역의 결과는 정확하고 자연스럽다. 본 논문에서는 양국어 사전에서 제공하는 구절 중심의 여러가지 번역정보들을, 한영 기계번역시스템이 이용할 수 있는 형태의 동사 변환사전을 제안하였다. 제안된 변환사전에서는 첫째로, 구절 중심의 번역에서 동사의 역어가 선택되어지는 기준을 제공하여, 변환과정에서 추가적인 의미해석없이도 역어를 효과적으로 선택할 수 있도록 하였다. 둘째로 동사의 역어가 취하는 구체적인 구문구조를 제공하여, 여러 단계의 구조변환의 복잡도를 줄이면서도 두 언어간의 표현방식의 차이점을 해결할 수 있게 하였다.

  • PDF

중한 기계 번역 시스템을 위한 형태소 분석기 (A Morph Analyzer For MATES/CK)

  • 강원석;김지현;송영미;송희정;황금하;채영숙;최기선
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2000년도 제12회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.331-336
    • /
    • 2000
  • MATES/CK는 기계번역 시스템에서 전통적으로 사용하고 있는 세 단계(분석/변환/생성)에 의해서 중한 번역을 수행하는 시스템이다. MATES/CK는 시스템 성능을 높이기 위해 패턴 기반과 통계적 정보를 이용한다. 태거(Tagger)는 중국어 단어 분리를 최장일치법으로 수행하기 때문에 일부 단어에 대해 오류를 범하게 되고 품사(POS : Part Of Speech) 태깅 시 확률적 정보만 이용하여 특정 단어가 다 품사인 경우 그 단어에 대해 특정 품사만 태깅되는 문제점이 발생한다. 또한 중국어 및 외국어 인명 및 지명에 대한 미등록들에 대해서도 올바른 결과를 도출하지 못한다. 사전에 있어서 텍스트 기반으로 존재하여 이를 관리하기에 힘이 든다. 본 논문에서는 단어 분리 오류 및 품사 태깅 오류를 해결하기 위해 중국어 태깅 제약 규칙을 적용하는 방법을 제시하고 중국어 및 외국어 인명/지명에 대한 미등록어 처리방법을 제시한다. 또한 중국어 사전 관리에 대해 알아본다.

  • PDF

ICLAL: 인 컨텍스트 러닝 기반 오디오-언어 멀티 모달 딥러닝 모델 (ICLAL: In-Context Learning-Based Audio-Language Multi-Modal Deep Learning Models)

  • 박준영;여진영 ;이고은 ;최창환;최상일
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.514-517
    • /
    • 2023
  • 본 연구는 인 컨택스트 러닝 (In-Context Learning)을 오디오-언어 작업에 적용하기 위한 멀티모달 (Multi-Modal) 딥러닝 모델을 다룬다. 해당 모델을 통해 학습 단계에서 오디오와 텍스트의 소통 가능한 형태의 표현 (Representation)을 학습하고 여러가지 오디오-텍스트 작업을 수행할 수 있는 멀티모달 딥러닝 모델을 개발하는 것이 본 연구의 목적이다. 모델은 오디오 인코더와 언어 인코더가 연결된 구조를 가지고 있으며, 언어 모델은 6.7B, 30B 의 파라미터 수를 가진 자동회귀 (Autoregressive) 대형 언어 모델 (Large Language Model)을 사용한다 오디오 인코더는 자기지도학습 (Self-Supervised Learning)을 기반으로 사전학습 된 오디오 특징 추출 모델이다. 언어모델이 상대적으로 대용량이기 언어모델의 파라미터를 고정하고 오디오 인코더의 파라미터만 업데이트하는 프로즌 (Frozen) 방법으로 학습한다. 학습을 위한 과제는 음성인식 (Automatic Speech Recognition)과 요약 (Abstractive Summarization) 이다. 학습을 마친 후 질의응답 (Question Answering) 작업으로 테스트를 진행했다. 그 결과, 정답 문장을 생성하기 위해서는 추가적인 학습이 필요한 것으로 보였으나, 음성인식으로 사전학습 한 모델의 경우 정답과 유사한 키워드를 사용하는 문법적으로 올바른 문장을 생성함을 확인했다.

DHP 연관 규칙 탐사 알고리즘을 위한 효율적인 해싱 메카니즘 (An Efficient Hashing Mechanism of the DHP Algorithm for Mining Association Rules)

  • 이형봉
    • 정보처리학회논문지D
    • /
    • 제13D권5호
    • /
    • pp.651-660
    • /
    • 2006
  • Apriori 알고리즘에 기반 한 연관 규칙 탐사 알고리즘들은 후보 빈발 항목 집합의 계수 관리를 위한 자료구조로 해시 트리를 사용하고, 많은 시간이 그 해시 트리를 검색하기 위해 소요된다. DHP 연관 규칙 탐사 알고리즘은 해시 트리에 대한 검색 시간을 절약하기 위해 검색 대상인 후보 빈발 항목 집합의 개수를 최대한 줄이고자 노력한다. 이를 위해 사전에 예비 후보 빈발 항목 집합에 대한 간편 계수를 실시한다. 이 때, 예비 계수에 필요한 계산 부담을 줄이기 위해 아주 간단한 직접 해시 테이블 사용을 권고한다. 이 논문에서는 DHP 연관 규칙 탐사 알고리즘의 단계 2에서 사전 전지를 위해 사용되는 직접 해시 테이블 $H_2$와 모든 단계에서 후보 빈발 항목 집합의 계수를 위해 사용되는 해시 트리 $C_k$에 적용될 수 있는 효율적인 해싱 메카니즘을 제안하고 검증한다. 검증 결과 일반적인 단순 제산(mod) 연산 방법을 사용했을 때보다 제안 방법을 적용했을 경우 최대 82.2%, 평균 18.5%의 성능 향상이 얻어지는 것으로 나타났다.

분야별 관련어사전에 의한 한글 웹문서 자동분류 (Automatic Korean Text Categorization by Subject Thesaurus)

  • 김영;채수환
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2005년도 춘계학술발표대회
    • /
    • pp.771-774
    • /
    • 2005
  • 인터넷이 폭 넓게 보급되어 온라인 상에서 얻을 수 있는 텍스트 정보의 양이 급증함에 따라 산재해 있는 문서들에 대한 효과적인 정보 관리 및 검색이 요구되고 있다. 자동 문서분류란 문서의 내용에 기반하여 미리 정의되어 있는 범주에 문서를 자동으로 할당하는 작업으로써 효율적인 정보 관리 및 검색을 가능하게 한다. 특히 한국어 정보처리의 중요성에 비해 관련 분야의 자료들을 수집, 분류하는데 있어 많은 어려움이 있다. 따라서 논문에서는 한글 웹문서 자동 문서 범주화에 대한 수행단계중 각 분야에 대해 사전구축을 하고, 중복단어제거를 통한 보다 효과적인 분야별 문서분류를 제안하고자한다.

  • PDF

교차언어 문서검색에서 다국어 온톨로지에 기반한 한영 질의어 변환 (Korean-to-English Query Translation based on Multilingual Ontology in Cross-Language Text Retrieval)

  • 천정훈;최기선
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1999년도 제11회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.43-49
    • /
    • 1999
  • 본 논문에서는 교차언어 문서검색(CLTR: Cross-Language Text Retrieval)에서의 한-영 질의어 변환을 다룬다. 질의어 변환시 영어 대역어 획득과정에서는 다음 두 가지를 고려한다. 첫째, 한국어 질의어를 구성하는 단어가 한가지 개념을 기호화하지만 이에 대응되는 영어 대역어들이 하나 이상인 경우이다. 둘째, 질의어 구성 단어가 둘 이상의 개념들을 기호화하는 다의성을 지닌 경우이다. 전자의 경우는 영어 대역어들이 모두 동일한 개념, 또는 유사한 개념을 나타내므로 그대로 검색에 이용한다 해도 검색 성능을 크게 좌우하지 않지만, 후자의 경우는 모든 개념을 다 검색에 이용하게 되면 정확률(precision)이 크게 떨어지게 된다. 이에 본 연구에서는 개념 선택단계와 선택된 개념의 영어 대역어들에 가중치를 주는 가중치 부가단계로 나누어 질의어 변환을 수행한다. 본 논문의 질의어 변환에서 영어 대역어는 대역사전 대신 다국어 온톨로지인 KAIST 분류어휘표와 한영 음차복원 모듈을 통해 얻어진다.

  • PDF

초등학생을 위한 ICT 용어에 대한 연구 (A Study on ICT Terms for Elementary Students)

  • 장연란;김갑수
    • 한국정보교육학회:학술대회논문집
    • /
    • 한국정보교육학회 2008년도 동계학술대회
    • /
    • pp.160-165
    • /
    • 2008
  • 본 연구에서는 2005년 12월에 개정된 초 중등학교 정보통신기술 교육 운영지침에 따라 변화된 교육과정에 적합한 초등학교 ICT 용어를 선정하였다. 정보통신기술의 급격하게 발달하면서 새로운 용어가 계속 생성되고, 사양화되는 용어가 생겼으며, 교육인적자원부가 이러한 사회적 요구에 따라 초 중등학교 정보통신기술 교육 운영지침을 개정하였기 때문에 초등학교 ICT 용어도 그에 적합하게 재정비할 필요가 있다. 먼저 개정된 운영지침과 초등학교 전자교과서를 분석하여 예비 용어를 약 327개를 수집하였다. 그리고 새 운영지침과 정보통신기술용어 사전을 참고로 하여 초등학교 ICT 용어 선정의 원칙과 표기 원칙을 정하여 239개의 초등 ICT 용어를 선정하였다. 마지막으로 선정된 초등 ICT 용어를 새 운영지침에 맞게 단계별로 1, 2, 3 단계로 분류하고, 영역별로 정보 생활 용어, 정보 기기 용어, 정보 처리 용어, 정보 가공 용어로 나누어 분류하였다.

  • PDF