본 논문에서는 띄어쓰기 오류와 철자 오류를 동시에 교정 가능한 전처리기를 제안한다. 제시된 알고리즘은 기존의 전처리기 알고리즘이 각 오류를 따로 해결하는 데에서 오는 한계를 극복하고, 기존의 noisy-channel model을 확장하여 대화체의 띄어쓰기 오류와 철자오류를 동시에 효과적으로 교정할 수 있다. N-gram과 자소변환확률 등의 통계적 방법과 어절변환패턴 사전을 이용하여 최대한 사전을 적게 이용하면서도 효과적으로 교정 후보들을 생성할 수 있다. 실험을 통해 현재 단계에서는 만족할 만한 성능을 얻지는 못하였지만 오류 분석을 통하여 이와 같은 방법론이 실제로 효용성이 있음을 알 수 있었고 앞으로 더 많은 개선을 통해 일상적인 대화체 문장에 대해서 효과적인 전처리기로서 기능할 수 있을 것으로 기대 된다.
본 논문에서는 분산 워크플로우 실행 이벤트 로그를 수집하고 분류하기 위한 사전 처리 도구로서 맵-리듀스기반 클러스터링 기법을 제안한다. 특히 우리는 볼륨, 속도, 다양성, 진실성 및 가치와 같은 BIG 데이터의 5V 속성에 만족하고 잘 충족되어 있기 때문에 분산 워크플로우 실행 이벤트 로그를 특별히 워크플로우 빅-로그(Workflow BIG-Logs)라고 정의한다. 이 논문에서 개발하는 클러스터링 기술은워크플로우 빅-로그를 기반으로 하는 특정 워크플로 프로세스 마이닝 및 분석 알고리즘의 사전 처리 단계에 적용하기 위한 목적으로 고안된 것이다. 즉, 맵리듀스(Map-Reduce) 프레임워크를 워크플로우 빅-로그 처리 플랫폼으로 사용하고, IEEE XES 표준 데이터 형식을 지원하며, 결국 본 연구에서 개발중에 있는 구조적 정보제어넷기반 워크플로우 프로세스 마이닝 알고리즘인 ${\rho}$-알고리즘의 사전 처리 단계 전용으로 사용되도록 구현된 것이다. 보다 자세하게 말하자면, 워크플로우 빅-로그의 클러스터링 패턴은 단위업무액티버티 기반 클러스터링 패턴과 단위업무 수행자 기반 클러스터링 패턴으로 분류되는데, 특별히 단위업무 액티버티 패턴의 하나인 시간적 워크케이스 패턴과 그의 발생 건수를 재발견하는 맵리듀스 기반 클러스터링 알고리즘을 설계하고 구현하고자 한다. 마지막으로, 우리는 BPI 챌린지에서 공개한 워크플로우 실행 이벤트 로그 데이터세트에 대해 일련의 실험을 수행함으로써 제안된 클러스터링 기법의 기술적 타당성을 검증한다.
서브시퀀스 매칭은 주어진 질의 시퀀스와 변화의 추세가 유사한 서브시퀀스들을 시계열 데이타베이스로부터 검색하는 연산이다. 본 논문에서는 서브시퀀스 매칭 처리의 성능 병목을 파악하고, 이를 해결함으로써 전체 서브시퀀스 매칭의 성능을 크게 개선하는 방안에 관하여 논의한다. 먼저, 사전 실험을 통하여 전체 서브시퀀스 매칭의 처리 시간 중 인덱스 검색 단계와 후처리 단계에서 디스크 액세스 시간 및 CPU 처리 시간이 차지하는 비중을 분석한다. 이를 바탕으로 후처리 단계가 서브시퀀스 매칭의 성능 병목이며, 후처리 단계의 최적화가 기존의 서브시퀀스 매칭 기법들이 간과한 매우 중요한 이슈임을 지적한다. 이러한 서브시퀀스 매칭의 성능 병목을 해결하기 위하여 후처리 단계를 최적으로 처리할 수 있는 간단하면서도 매우 효과적인 기법을 제안한다. 제안된 기법은 후처리 단계에서 후보 서브시퀀스들이 질의 시퀀스와 실제로 유사한가를 판단하는 순서를 조정함으로써 기존의 후처리 단계의 처리에서 발생하는 많은 디스크 액세스의 중복과 CPU 처리의 중복을 완전히 제거한 수 있다 제안된 기법이 착오 기각을 발생시키지 않음과 후처리 단계를 처리하기 위한 최적의 기법임을 이론적으로 증명한다. 또한, 실제 데이타와 생성 데이타를 이용한 다양한 실험들을 통하여 제안된 기법의 성능 개선 효과를 정량적으로 검증한다. 실험 결과에 의하면, 제안된 기법은 기존 기법의 후처리 단계 수행 시간을 실제 주식 데이타를 이용한 실험의 경우 ,3.91 배에서 9.42배까지, 대규모의 생성 데이터를 이용한 실험의 경우 4.97 배에서 5.61배까지 개선시키는 것으로 나타났다. 또한, 제안된 기법을 채택함으로써 전체 서브시퀀스 매칭 처리 시간의 90%에 이르던 후처리 단계의 비중을 70%이하로 내릴 수 있었다. 이것은 제안된 기법이 서브시퀀스 매칭의 성능 병목을 성공적으로 해결하였음을 보여주는 것이다. 이 견과, 제안된 기법은 전체 서브시퀀tm 매칭의 성능을 실제 주식 데이타를 사용한 실험의 경우 3.05 배에서 5.60 배까지, 대규모의 생성 데이타를 이용한 실험의 경우 3.68 배에서 4.21 배까지 개선시킬 수 있었다.
변환방식의 기계번역은 변환사전에서 제공하는 정보의 종류와 그의 정밀성에 따라서 변환과정의 복잡도와 번역의 질이 결정되어 진다. 사람에 의한 번역은 양국어 사전에서 제공하는 구절 중심의 번역정보를 이용함으로써, 그 번역의 결과는 정확하고 자연스럽다. 본 논문에서는 양국어 사전에서 제공하는 구절 중심의 여러가지 번역정보들을, 한영 기계번역시스템이 이용할 수 있는 형태의 동사 변환사전을 제안하였다. 제안된 변환사전에서는 첫째로, 구절 중심의 번역에서 동사의 역어가 선택되어지는 기준을 제공하여, 변환과정에서 추가적인 의미해석없이도 역어를 효과적으로 선택할 수 있도록 하였다. 둘째로 동사의 역어가 취하는 구체적인 구문구조를 제공하여, 여러 단계의 구조변환의 복잡도를 줄이면서도 두 언어간의 표현방식의 차이점을 해결할 수 있게 하였다.
MATES/CK는 기계번역 시스템에서 전통적으로 사용하고 있는 세 단계(분석/변환/생성)에 의해서 중한 번역을 수행하는 시스템이다. MATES/CK는 시스템 성능을 높이기 위해 패턴 기반과 통계적 정보를 이용한다. 태거(Tagger)는 중국어 단어 분리를 최장일치법으로 수행하기 때문에 일부 단어에 대해 오류를 범하게 되고 품사(POS : Part Of Speech) 태깅 시 확률적 정보만 이용하여 특정 단어가 다 품사인 경우 그 단어에 대해 특정 품사만 태깅되는 문제점이 발생한다. 또한 중국어 및 외국어 인명 및 지명에 대한 미등록들에 대해서도 올바른 결과를 도출하지 못한다. 사전에 있어서 텍스트 기반으로 존재하여 이를 관리하기에 힘이 든다. 본 논문에서는 단어 분리 오류 및 품사 태깅 오류를 해결하기 위해 중국어 태깅 제약 규칙을 적용하는 방법을 제시하고 중국어 및 외국어 인명/지명에 대한 미등록어 처리방법을 제시한다. 또한 중국어 사전 관리에 대해 알아본다.
본 연구는 인 컨택스트 러닝 (In-Context Learning)을 오디오-언어 작업에 적용하기 위한 멀티모달 (Multi-Modal) 딥러닝 모델을 다룬다. 해당 모델을 통해 학습 단계에서 오디오와 텍스트의 소통 가능한 형태의 표현 (Representation)을 학습하고 여러가지 오디오-텍스트 작업을 수행할 수 있는 멀티모달 딥러닝 모델을 개발하는 것이 본 연구의 목적이다. 모델은 오디오 인코더와 언어 인코더가 연결된 구조를 가지고 있으며, 언어 모델은 6.7B, 30B 의 파라미터 수를 가진 자동회귀 (Autoregressive) 대형 언어 모델 (Large Language Model)을 사용한다 오디오 인코더는 자기지도학습 (Self-Supervised Learning)을 기반으로 사전학습 된 오디오 특징 추출 모델이다. 언어모델이 상대적으로 대용량이기 언어모델의 파라미터를 고정하고 오디오 인코더의 파라미터만 업데이트하는 프로즌 (Frozen) 방법으로 학습한다. 학습을 위한 과제는 음성인식 (Automatic Speech Recognition)과 요약 (Abstractive Summarization) 이다. 학습을 마친 후 질의응답 (Question Answering) 작업으로 테스트를 진행했다. 그 결과, 정답 문장을 생성하기 위해서는 추가적인 학습이 필요한 것으로 보였으나, 음성인식으로 사전학습 한 모델의 경우 정답과 유사한 키워드를 사용하는 문법적으로 올바른 문장을 생성함을 확인했다.
Apriori 알고리즘에 기반 한 연관 규칙 탐사 알고리즘들은 후보 빈발 항목 집합의 계수 관리를 위한 자료구조로 해시 트리를 사용하고, 많은 시간이 그 해시 트리를 검색하기 위해 소요된다. DHP 연관 규칙 탐사 알고리즘은 해시 트리에 대한 검색 시간을 절약하기 위해 검색 대상인 후보 빈발 항목 집합의 개수를 최대한 줄이고자 노력한다. 이를 위해 사전에 예비 후보 빈발 항목 집합에 대한 간편 계수를 실시한다. 이 때, 예비 계수에 필요한 계산 부담을 줄이기 위해 아주 간단한 직접 해시 테이블 사용을 권고한다. 이 논문에서는 DHP 연관 규칙 탐사 알고리즘의 단계 2에서 사전 전지를 위해 사용되는 직접 해시 테이블 $H_2$와 모든 단계에서 후보 빈발 항목 집합의 계수를 위해 사용되는 해시 트리 $C_k$에 적용될 수 있는 효율적인 해싱 메카니즘을 제안하고 검증한다. 검증 결과 일반적인 단순 제산(mod) 연산 방법을 사용했을 때보다 제안 방법을 적용했을 경우 최대 82.2%, 평균 18.5%의 성능 향상이 얻어지는 것으로 나타났다.
인터넷이 폭 넓게 보급되어 온라인 상에서 얻을 수 있는 텍스트 정보의 양이 급증함에 따라 산재해 있는 문서들에 대한 효과적인 정보 관리 및 검색이 요구되고 있다. 자동 문서분류란 문서의 내용에 기반하여 미리 정의되어 있는 범주에 문서를 자동으로 할당하는 작업으로써 효율적인 정보 관리 및 검색을 가능하게 한다. 특히 한국어 정보처리의 중요성에 비해 관련 분야의 자료들을 수집, 분류하는데 있어 많은 어려움이 있다. 따라서 논문에서는 한글 웹문서 자동 문서 범주화에 대한 수행단계중 각 분야에 대해 사전구축을 하고, 중복단어제거를 통한 보다 효과적인 분야별 문서분류를 제안하고자한다.
본 논문에서는 교차언어 문서검색(CLTR: Cross-Language Text Retrieval)에서의 한-영 질의어 변환을 다룬다. 질의어 변환시 영어 대역어 획득과정에서는 다음 두 가지를 고려한다. 첫째, 한국어 질의어를 구성하는 단어가 한가지 개념을 기호화하지만 이에 대응되는 영어 대역어들이 하나 이상인 경우이다. 둘째, 질의어 구성 단어가 둘 이상의 개념들을 기호화하는 다의성을 지닌 경우이다. 전자의 경우는 영어 대역어들이 모두 동일한 개념, 또는 유사한 개념을 나타내므로 그대로 검색에 이용한다 해도 검색 성능을 크게 좌우하지 않지만, 후자의 경우는 모든 개념을 다 검색에 이용하게 되면 정확률(precision)이 크게 떨어지게 된다. 이에 본 연구에서는 개념 선택단계와 선택된 개념의 영어 대역어들에 가중치를 주는 가중치 부가단계로 나누어 질의어 변환을 수행한다. 본 논문의 질의어 변환에서 영어 대역어는 대역사전 대신 다국어 온톨로지인 KAIST 분류어휘표와 한영 음차복원 모듈을 통해 얻어진다.
본 연구에서는 2005년 12월에 개정된 초 중등학교 정보통신기술 교육 운영지침에 따라 변화된 교육과정에 적합한 초등학교 ICT 용어를 선정하였다. 정보통신기술의 급격하게 발달하면서 새로운 용어가 계속 생성되고, 사양화되는 용어가 생겼으며, 교육인적자원부가 이러한 사회적 요구에 따라 초 중등학교 정보통신기술 교육 운영지침을 개정하였기 때문에 초등학교 ICT 용어도 그에 적합하게 재정비할 필요가 있다. 먼저 개정된 운영지침과 초등학교 전자교과서를 분석하여 예비 용어를 약 327개를 수집하였다. 그리고 새 운영지침과 정보통신기술용어 사전을 참고로 하여 초등학교 ICT 용어 선정의 원칙과 표기 원칙을 정하여 239개의 초등 ICT 용어를 선정하였다. 마지막으로 선정된 초등 ICT 용어를 새 운영지침에 맞게 단계별로 1, 2, 3 단계로 분류하고, 영역별로 정보 생활 용어, 정보 기기 용어, 정보 처리 용어, 정보 가공 용어로 나누어 분류하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.