• 제목/요약/키워드: 사전 처리

검색결과 2,337건 처리시간 0.029초

개체명 사전 기반의 반자동 말뭉치 구축 도구 (A Semi-automatic Annotation Tool based on Named Entity Dictionary)

  • 노경목;김창현;천민아;박호민;윤호;김재균;김재훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2017년도 제29회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.309-313
    • /
    • 2017
  • 개체명은 인명, 지명, 조직명 등 문서 내에서 중요한 의미를 가지므로 질의응답, 요약, 기계번역 분야에서 유용하게 사용되고 있다. 개체명 인식은 문서에서 개체명에 해당하는 단어를 찾아 개체명 범주를 부착하는 작업을 말한다. 개체명 인식 연구에는 개체명 범주가 부착된 개체명 말뭉치를 사용한다. 개체명의 범주는 연구 분야에 따라 다양하게 정의되므로 연구 분야에 적합한 개체명 말뭉치가 필요하다. 하지만 이런 말뭉치를 구축하는 일은 시간과 인력이 많이 필요하다. 따라서 본 논문에서는 개체명 사전 기반의 반자동 말뭉치 구축 도구를 제안한다. 제안하는 도구는 크게 전처리, 사용자 태깅, 후처리 단계로 나뉜다. 전처리 단계는 자동으로 개체명을 찾는 단계이다. 약 11만 개의 개체명을 기반으로 하여 트라이(trie) 구조의 개체명 사전을 구축한 후 사전을 이용하여 개체명을 자동으로 찾는다. 사용자 태깅 단계는 사용자가 수동으로 개체명을 태깅하는 단계이다. 전처리 단계에서 찾은 개체명 중 오류가 있는 개체명들은 수정하거나 삭제하고, 찾지 못한 개체명들은 사용자가 추가로 태깅하는 단계이다. 후처리 단계는 태깅한 결과로부터 사전 정보를 갱신하는 단계이다. 제안한 말뭉치 구축 도구를 이용하여 752개의 뉴스 기사에 대해 개체명을 태깅한 결과 7,620개의 개체명이 사전에 추가되었다. 제안한 도구를 사용한 결과 사용하지 않았을 때 비해 약 57.6% 정도 태깅 횟수가 감소했다.

  • PDF

구문구조를 이용하여 정답을 추출하는 질의응답 시스템 (A Question Answering Using Syntactic Structure for Answer Extraction)

  • 이대연;서영훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2003년도 제15회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.89-94
    • /
    • 2003
  • 본 논문에서는 질의문 내에 포함된 동사를 중심으로 한 질의어 확장 및 정답 추출 기법을 이용한 질의 응답 시스템에 대해 기술한다. 질의 응답시스템 전체의 과정에서 동사는 하나의 정보를 표현하는 중요한 요소로 활용하며, 동사에 대한 활용은 구축된 동사구문 사전의 정보를 이용한다. 동사구문 사전은 동사의 일반적인 표층형태와, 각 문장 성분들의 의미속성, 유의동사 등의 정보를 담고 있다. 또한 동사 구문사전의 활용에서의 동사 모호성을 배제하고, 효율을 높이기 위해 약 3만 어휘의 명사 의미 사전을 사용한다. 명사 의미사전은 구문사전 내에 사용된 의미분류로 나누어져 있으며, 유의명사 및 국어사전 상의 뜻 풀이말을 포함하고 있다. 질의문 및 각 후보 문장에 대한 구문분석은 구문사전 내에 나타난 품사 별 의미속성과, 문법 형태소의 격 정보를 이용한 격 구조를 활용하였다. 논문 중에는 일반적인 질의 응답 시스템의 3단계에 맞추어 구문사전 활용 및 구문분석의 수행 단계를 보이고 마지막에 각 기법의 정확도를 보였다.

  • PDF

Glossary에 기초한 시스템에서의 적형태 영어문장 생성을 위한 한영 대역에 전자사전구축 (Constructing A Korean-English Bilingual Dictionary For Well-formed English Sentence Generations In A Glossary-based System)

  • 신효필
    • 인지과학
    • /
    • 제14권2호
    • /
    • pp.1-13
    • /
    • 2003
  • 본 논문은 자연언어처리 (Natural Language Processing), 특히 한영 기계번역에서 필수적 인 한영 대역어 사전을 구축함에 있어 영어 생성시 정확한 문장형태를 도출하기 위한 방법에 대해 논의한다. 기간의 연구는 주로 한국어와 영어의 의미적 모호성이 해결된 정확한 번역을 위한 대역어 내지 변환사전 구조에 초점이 맞추어져 왔고 상대적으로 형태적 또는 구문적으로 정확한 영어문장을 생성하는 것은 간과되어져 왔다. 기존 자원의 황용이라는 측면에서는 텍스트화된 한영사전을 그대로 이용한다고 하면 그 기술방식과 영어표현은 다양한 형태로 나타나기 때문에 정확한 의미의 대역어 뿐만 아니라 적격한 영어문장의 생성을 위해서는 어떠한 정보들이 대역어 사전에 기술되어야 하는지 고려해 볼 필요가 있다 따라서 본 논의에서는 기존의 인쇄된 한영사전을 구조분석하여 자동으로 변환하여 최소한의 인간의 간섭으로 정확한 영어생성에 필요한 형태적 정보를 자질로 부여하는 방법을 기술한다. 기본적으로 이 방법은 단어 대 단어 번역시스템 둥 glossary에 기초한 얕은 층위의 번역이 필요한 시스템을 위한 사전을 구축에서 시작하며 더 나아가 대규모의 전자사전 구축작업에서 어떻게 응용될 수 있는지 논의한다.

  • PDF

음성합성 플랫폼을 위한 언어처리부의 설계 및 구현 (Design and Implementation of the Language Processor for Educational TTS Platform)

  • 이상호
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2005년도 추계 학술대회 발표논문집
    • /
    • pp.219-222
    • /
    • 2005
  • 본 논문에서는 한국어 TSS 시스템을 위한 언어처리부의 설계 및 구현 과정을 설명한다. 구현된 언어처리부는 형태소 분석, 품사 태깅, 발음 변환 과정을 거쳐, 주어진 문장의 가장 적절한 발음열과 각 음소의 해당 품사를 출력한다. 프로그램은 표준 C언어로 구현되어 있고, Windows와 Linux에서 모두 동작되는 것을 확인하였다. 수동으로 품사가 할당된 4.5만 어절의 코퍼스로부터 형태소 사전을 구축하였으며, 모든 단어가 사전에 등록되어 있다고 가정할 경우, 488문장의 실험 자료에 대해 어절 단위 오류율이 3.25%이었다.

  • PDF

위키피디아를 이용한 영-한 개체명 대역어 쌍 구축 (Extracting English-Korean Named-Entity Word-pairs using Wikipedia)

  • 김은경;최기선
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2009년도 제21회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.101-105
    • /
    • 2009
  • 본 논문은 공통적으로 이용할 수 있는 웹 환경에서의 한국어 정보로 획득할 수 있는 정보의 양이 영어권 정보의 양보다 상대적으로 적다는 것을 토대로, 웹정보 이용의 불균형을 해소하고자 하는 목적으로부터 출발하였다. 최근에는 지식 정보의 세계화, 국제화에 따라 동일한 정보를 각국 언어로 제공하고자하는 연구가 꾸준히 증가하고 있다. 온라인 백과사전인 위키피디아 역시 현재 다국어로 제공이 되고 있지만 한국어로 작성된 문서는 영어로 작성된 문서의 5% 미만인 것으로 조사되었다. 본 논문에서는 위키피디아 내에서 제공하는 다국어간의 링크 정보와 인포박스 데이터를 활용하여 위키피디아 문서 내에서 개체명을 인식하고, 자동으로 개체명의 영-한 대역어 쌍을 추출하는 것을 목표로 한다. 개체명은 일반 사전에 등재 되지 않은 경우가 많기 때문에, 기계번역에서 사전 데이터 등을 활용하여 개체명을 처리하는 것은 쉽지 않으며 일반적으로 음차표기 방식을 함께 사용하여 해결하고 있다. 본 논문을 통해 위키피디아 데이터를 활용해 만들어진 영-한 개체명 대역어 사전을 구축하기 위해 사용된 기술은 추후 위키피디아 문서를 기계번역하는데 있어 동일한 방법으로 사용이 가능하며, 구축된 사전 데이터는 추후 영-한 자동 음차표기 연구의 사전 데이터로도 활용이 가능하다.

  • PDF

사전학습 언어모델의 단어간 의미관계 이해도 평가 (Probing Semantic Relations between Words in Pre-trained Language Model)

  • 오동석;권순재;이찬희;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.237-240
    • /
    • 2020
  • 사전학습 언어모델은 다양한 자연어처리 작업에서 높은 성능을 보였다. 하지만, 사전학습 언어모델은 문장 내 문맥 정보만을 학습하기 때문에 단어간 의미관계 정보를 추론하는데는 한계가 있다. 최근에는, 사전학습 언어모델이 어느수준으로 단어간 의미관계를 이해하고 있는지 다양한 Probing Test를 진행하고 있다. 이러한 Test는 언어모델의 강점과 약점을 분석하는데 효율적이며, 한층 더 인간의 언어를 정확하게 이해하기 위한 모델을 구축하는데 새로운 방향을 제시한다. 본 논문에서는 대표적인 사전 학습기반 언어모델인 BERT(Bidirectional Encoder Representations from Transformers)의 단어간 의미관계 이해도를 평가하는 3가지 작업을 진행한다. 첫 번째로 단어 간의 상위어, 하위어 관계를 나타내는 IsA 관계를 분석한다. 두번째는 '자동차'와 '변속'과 같은 관계를 나타내는 PartOf 관계를 분석한다. 마지막으로 '새'와 '날개'와 같은 관계를 나타내는 HasA 관계를 분석한다. 결과적으로, BERTbase 모델에 대해서는 추론 결과 대부분에서 낮은 성능을 보이지만, BERTlarge 모델에서는 BERTbase보다 높은 성능을 보였다.

  • PDF

공간 데이터 웨어하우스 구축기에서 사실테이블 사전 계산 기법 (Pre-Computation of Fact table in a Spatial Data Warehouse Builder.)

  • 최유신;유병섭;박순영;배해영
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2004년도 추계학술발표논문집(상)
    • /
    • pp.165-170
    • /
    • 2004
  • 공간 데이터 웨어하우스에서 구축기는 의사절정을 위한 기반 데이터의 구축을 담당한다. 일반적으로 공간 데이터 웨어하우스의 데이터 적재는 잦은 갱신으로 인한 서버의 부하를 줄이기 위하여 구축기에 적재할 데이터를 임시 저장하고 일정주기마다 적재하는 방법을 이용한다. 이때 구축기의 정보는 차원테이블에 대한 갱신정보와 사실 테이블의 일부 갱신정보만을 유지하므로 여러 차원 테이블로 구성된 사실 테이블의 갱신은 공간 데이터 웨어하우스 서버에서 수행해야 한다. 사실 테이블의 갱신연산은 연관된 차원 테이블들에 의해 처리되므로 높은 처리 비용이 필요하다. 따라서 사실테이블의 처리로 인해 적재시간이 증가하며, 이는 사용자의 의사결정 응답시간을 증가시킨다. 본 논문에서는 공간 데이터 웨어하우스의 구축기에서 사실테이블의 사전 계산 기법을 제안한다. 이 기법은 차원 테이블 및 사실 테이블에 대한 메타정보와 추가적으로 기록되어야할 데이터 정보를 구축기에 유지한다. 구축기는 이 정보를 이용하여 삽입 연산시 사실 테이블에 적재할 갱신 정보를 사전에 계산하고, 이를 적재주기에 함께 적재한다. 따라서 사실 테이블의 신을 데이터 적재 이전에 구축기에서 계산하므로 공간 데이터 웨어하우스 서버에서 발생하는 높은 처리 비용을 감소시킬 수 있다. 공간 데이터 웨어하우스 사용자의 의사결정 응답시간을 감소시킨다.

  • PDF

`어절 정보 사전`을 이용한 형태소 분석의 중의성 (Ambiguity) 해결 (Desambiguation Method based on a Lexicon of Typographical Units)

  • 남지순;최기선
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1997년도 제9회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.75-82
    • /
    • 1997
  • 이글은 한국어 형태소 분석시 발생하는 중의성의 유형에 대해서 논의하고, 그와 같은 여러 유형의 중의성의 발생율을 감소시키기 위한 방법으로써 '어절 정보 사전 시스템'의 구축을 강조하였다. 한국어 문서에 대한 형태소 분석시 발생하는 중의성은, 영어나 유럽어와는 달리, 어휘 형성 정보 뿐아니라 어절 형성 정보, 구문 구조에 관한 부분적인 정보까지도 제공되어야 비로소 해소될 수 있는 경우가 많아 이와 같은 정보를 얻어내기 위해서는 체계적으로 고안된 범용의 사전 (Lexicon)이 필요하다. 여기에서는 접사가 동반되어 구성될 수 있는 '파생 명사(Affixed Noun)'들의 경우에 논의의 범위를 제한하였다. 실제로, 체계적으로 구성된 하나의 파생어 사전은. 주어진 어절에 대한 형태소 분절시 발생할 수 있는 엄청난 수의 중의적 가능성을 해소해 줄 수 있는데. 이와 같은 사전을 구축하기 위해서는 단순어와 접사 사전이 모듈화되어 완성되어야 한다. 같은 방법으로 모든 합성어 유형에 대한 사전이 구축되고, 그러한 기본 형태들에 대한 '변화형' 사전이 결합되면 어절 정보를 갖춘 대용량의 한국어 MRD의 구현이 가능해질 것이다.

  • PDF

대화체 연속음성인식을 위한 확장 다중발음 사전에 관한 연구 (A Study on the Multiple Pronunciation Dictionary for Spontaneous Speech Recognition)

  • 강병옥
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 2003년도 10월 학술대회지
    • /
    • pp.65-68
    • /
    • 2003
  • 본 논문에서는 대화체 연속음성인식 과정에서 사용되는 다중발음사전의 개념을 확장하여 대화체 발화에 빈번하게 나타나는 불규칙한 발음변이 현상을 포용하도록 한 확장된 발음사전의 방법을 적용하여 대화체 연속음성인식에서 인식성능의 향상을 가져오게 됨을 실험을 통해 보여준다. 대화체 음성에서 빈번하게 나타나는 음운축약 및 음운탈락, 전형적인 오발화, 양성음의 음성음화 등의 발음변이는 언어모델의 효율성을 떨어뜨리고 어휘 수를 증가시켜 음성인식의 성능을 저하시키고, 또한 음성인식 결과로 나타나는 출력형태가 정형화되지 못하는 단점을 가지고 있다. 이에 이러한 발음변이들을 발음사전에 수용할 때 각각의 대표어휘에 대한 변이발음으로 처리하고, 언어모델과 어휘사전은 대표어휘만을 이용해 구성하도록 한다. 그리고, 음성인식기의 탐색부에서는 각각의 변이발음의 발음열도 탐색하되 대표어휘로 언어모델을 참조하도록 하고, 인식결과를 출력하도록 하여 결과적으로 인식성능을 향상시키고, 정형화된 출력패턴을 얻도록 한다. 본 연구에서는 어절단위 뿐 아니라 의사형태소[2] 단위의 발음사전에도 발음변이를 포용하도록 하여 실험을 하였다. 실험을 통해 어절단위의 다중발음사전 구성을 통해 ERR 10.9%, 의사형태소 단위의 다중발음 사전의 구성을 통해 ERR 4.3%의 성능향상을 보였다.

  • PDF

한.영 기계번역을 위한 중심어 기반 구 구조 변환 사전 (Head-based Pharse Structure Transfer Dictionary for Korean_English Machine Translation)

  • 이상조;박상규;김영택
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1994년도 제6회 한글 및 한국어정보처리 학술대회
    • /
    • pp.157-162
    • /
    • 1994
  • 한국어로부터 자연스러운 영어 역어문장을 생성하기 위한 정보를 사전에 일관성있게 수록하는 방법을 제시하였다. 기계번역의 각 과정에서 필요한 정보는 가장 적당한 형태로 사전으로부터 제공되어야 하는 것이 일반적인 방법이다. 그러나 한국어는 어순의 부분적 자유성, 어미의 복잡한 활용규칙, 조사의 다양한 쓰임새로 인해 이러한 규칙들의 정보를 일관되게 사전에 수록하기가 어려운 실정이다. 본 논문에서는 한국어 문장과 역어 문장을 단어나 구 혹은 절등의 구성요소들의 다대다 매핑규칙을 찾고 이들 규칙을 적당한 형태로 사전에 수록하여야하는 어려움에서 벗어나 문장대 문장구조를 직접대응시켜 구구조단위로 분석된 형태의 부분 파서트리 형태의 트리구조를 역어와 함께 사전에 수록하므로써 사전정보를 손쉽게 구축, 유지하고자 하였다. 또 이들 정보를 추출해내는 알고리즘을 사용함으로써 주어진 한국어 문장에 대해 사전에 수록된 가장 자연스러운 형태의 역어문장을 생성할 수 있도록 하였다.

  • PDF