학생의 사전질문은 교사에게 학생의 관심사와 수준을 제공해줄 뿐만 아니라, 교육의 수요자인 학생의 관점을 반영하여 교수-학습을 진행할 수 있는 단서를 제공해주는 유용한 수단이다. 이 연구의 목적은 학생의 사전질문을 효과적으로 분석하기 위한 분석틀을 개발하고, 이 분석틀을 적용하여 2009 개정 교육과정의 초등과학 학습 단원과 관련된 학생의 사전질문을 분석하는 것이다. 개발된 분석틀은 지식형, 확장형, 호기심형 질문의 3개의 대범주로 구성되며, 각각의 범주에서 다시 몇 개의 하부 영역으로 세분된다. 개발된 분석틀을 이용하여 2009 개정 교육과정 초등과학 5, 6학년 학습 단원에서 제시한 학생사전질문 914개를 분석한 결과, 학년 및 학습 단원, 차시별로 분포하는 질문 유형이 다른 것으로 나타났으며, 유형별 질문의 비율에도 차이가 있었다. 이러한 결과를 바탕으로 사전질문 분석틀을 통해 학습에 대한 학생의 요구를 파악하고 이를 반영한 학생 중심의 교수-학습의 방향을 제시하였으며, 추후 연구에서도 분석틀이 유의미한 기여를 할 것으로 기대된다.
기계독해는 자연어로 표현된 질문과 단락이 주어졌을 때, 해당 단락 내에 표현된 정답을 찾는 태스크이다. 최근 기계독해 태스크도 다른 자연어처리 태스크와 유사하게 BERT, XLNet, RoBERTa와 같이 사전에 학습한 언어모델을 이용하고 질문과 단락이 입력되었을 경우 정답의 경계를 추가 학습(fine-tuning)하는 방법이 우수한 성능을 보이고 있으며, 특히 KorQuAD v1.0 데이터셋에서 학습 및 평가하였을 경우 94% F1 이상의 높은 성능을 보이고 있다. 본 논문에서는 현재 최고 수준의 기계독해 기술이 학습셋과 유사한 평가셋이 아닌 일반적인 질문과 단락 쌍에 대해서 가지는 일반화 능력을 평가하고자 한다. 이를 위하여 첫번째로 한국어에 대해서 공개된 KorQuAD v1.0 데이터셋과 NIA v2017 데이터셋, 그리고 엑소브레인 과제에서 구축한 엑소브레인 v2018 데이터셋을 이용하여 데이터셋 간의 교차 평가를 수행하였다. 교차 평가결과, 각 데이터셋의 정답의 길이, 질문과 단락 사이의 오버랩 비율과 같은 데이터셋 통계와 일반화 성능이 서로 관련이 있음을 확인하였다. 다음으로 KorBERT 사전 학습 언어모델과 학습 가능한 기계독해 데이터 셋 21만 건 전체를 이용하여 학습한 기계독해 모델에 대해 블라인드 평가셋 평가를 수행하였다. 블라인드 평가로 일반분야에서 학습한 기계독해 모델의 법률분야 평가셋에서의 일반화 성능을 평가하고, 정답 단락을 읽고 질문을 생성하지 않고 질문을 먼저 생성한 후 정답 단락을 검색한 평가셋에서의 기계독해 성능을 평가하였다. 블라인드 평가 결과, 사전 학습 언어 모델을 사용하지 않은 기계독해 모델 대비 사전 학습 언어 모델을 사용하는 모델이 큰 폭의 일반화 성능을 보였으나, 정답의 길이가 길고 질문과 단락 사이 어휘 오버랩 비율이 낮은 평가셋에서는 아직 80%이하의 성능을 보임을 확인하였다. 본 논문의 실험 결과 기계 독해 태스크는 특성 상 질문과 정답 사이의 어휘 오버랩 및 정답의 길이에 따라 난이도 및 일반화 성능 차이가 발생함을 확인하였고, 일반적인 질문과 단락을 대상으로 하는 기계독해 모델 개발을 위해서는 다양한 유형의 평가셋에서 일반화 평가가 필요함을 확인하였다.
기계독해(MRC)는 인공지능 알고리즘이 문서를 이해하고 질문에 대한 정답을 찾는 기술이다. MRC는 사전 학습 모델을 사용하여 높은 성능을 내고 있고, 일반 텍스트문서 뿐만 아니라 문서 내의 테이블(표)에서도 정답을 찾고자 하는 연구에 활발히 적용되고 있다. 본 연구에서는 기존의 사전학습 모델을 테이블 데이터에 활용하여 질의응답을 할 수 있는 방법을 제안한다. 더불어 테이블 데이터를 효율적으로 학습하기 위한 데이터 구성 방법을 소개한다. 사전학습 모델은 BERT[1]를 사용하여 테이블 정보를 인코딩하고 Masked Entity Recovery(MER) 방식을 사용한다. 테이블 질의응답 모델 학습을 위해 한국어 위키 문서에서 표와 연관 텍스트를 추출하여 사전학습을 진행하였고, 미세 조정은 샘플링한 테이블에 대한 질문-답변 데이터 약 7만건을 구성하여 진행하였다. 결과로 KorQuAD2.0 데이터셋의 테이블 관련 질문 데이터에서 EM 69.07, F1 78.34로 기존 연구보다 우수한 성능을 보였다.
어떠한 질문에 대한 구체적 해답을 얻고 싶은 경우, 일반적인 정보 검색이 가지는 문제점은 검색 결과가 사용자가 찾고자 하는 답이라 하기 보다는 해답을 포함하는(또는 포함하지 않는) 문서의 집합이라는 점이다. 사용자가 후보문서를 모두 읽을 필요 없이 빠르게 원하는 정보를 얻기 위해서는 검색의 결과로 문서집합을 제시하기 보다는 실제 원하는 답을 제공하는 시스템의 필요성이 대두된다. 이를 위해 기존의 TF-IDF(Term Frequency-Inversed Document Frequency)기반의 정보검색의 방삭에 자연언어처리(Natural Language Processing)를 이용한 질문의 분류와 문서의 사전 표지(Tagging)를 사용할 수 있다. 본 연구에서는 매년 NIST(National Institute of Standards & Technology)와 DARPA(Defense Advanced Research Projects Agency)주관으로 열리는 TREC(Text REtrieval Conference)중 1999년에 열린 TREC-8의 사용자의 질문(Question)에 대한 답(Answer)을 찾는 ‘Question & Answer’문제의 실험 환경에서 질문을 특징별로 분류하고 검색 대상의 문서에 대한 사전 표지를 이용한 정보검색 시스템으로 사용자의 질문(Question)에 대한 해답을 보다 정확하고 효율적으로 제시할 수 있음을 실험을 통하여 보인다.
이 연구 목적은 시스템 사고가 요구되는 계절별 별자리 학습에서 SBF 질문을 제시한 경우, 초등학생의 개념성취 수준과 시선이동에 미치는 영향을 분석하는 것이다. 본 연구에서는 SBF 질문의 효과를 알아보기 위해 연구집단과 비교집단으로 나누고 질문 유형을 달리한 과학 텍스트를 제시하여 초등학교 6학년 학습자의 개념성취 수준 및 시선이동 차이를 분석하였다. 개념성취 수준을 분석하기 위해 집단 내·집단 간 사전·사후 검사를 실시하였으며, 시선이동 차이를 분석하기 위해 Eye-tracker를 활용하여 학습자의 시선을 추적하였다. 연구 참여자는 연구 참여 동의서를 통해 자발적으로 연구 참여 의사를 밝힌 초등학교 6학년 학생 36명이다(연구집단 18명, 비교집단 18명). 본 연구를 위해 연구 참여자는 2015 개정 교육과정에서 제시한 계절별 별자리와 관련된 학습 내용 전까지만 학습한 상태로 연구에 참여하였다. 자료 분석은 개발한 개념 검사지의 사전·사후 검사 결과와 계절별 별자리와 관련된 과학 텍스트를 학습할 때의 시선이동 자료를 정량적으로 분석하였다. 연구 결과 첫째, 계절별 별자리 학습에서 SBF 질문은 유효한 학습 전략이었다. 학습자에게 구조(Structure)-작용(Behavior)-기능(Function)과 관련된 질문을 순차적이고 구체적으로 제시하였을 때, 일반적인 질문보다 더 높은 학습효과를 나타내었다. 즉 SBF 질문은 집단 간 사전·사후 개념 검사에서 통계적으로 유의한 차이(p<0.05)를 보였으며, 집단 내 사전·사후 개념 검사에서 통계적으로 유의한 차이(p<0.001)를 보였다. 둘째, SBF 질문은 선개념이 높지 않은 학습자에게 개념성취에 도움이 되는 영역을 학습하도록 유도하여 학습자의 학습에 긍정적인 영향을 주었다. 즉, 우주기반 관점의 시각 자료와 함께 SBF 질문을 제시하였을 때, 교과서의 일반적인 질문을 제시한 경우보다 학습자의 총 시선고정 수에서 유의미한 차이(p<0.01)를 보임을 시선이동 분석 결과를 토대로 확인하였으며, SBF 질문으로 학습한 학습자의 개념성취 수준이 향상됨을 정량적으로 확인하였다. 이는 SBF 질문이 시각 자료가 함께 제시된 과학 텍스트 학습 과정에서 능동적인 학습을 촉진한다는 실증적인 증거이다. 반면, 과학적 선개념을 많이 가지고 있는 학습자에게는 SBF 질문의 효과보다 학습자 자신이 가지고 있는 선개념이 견고한 핵으로 작용하여 탐구의 효과가 크지 않았다. 본 연구는 계절별 별자리 학습 과정에서 SBF 질문의 효과를 사전·사후 검사와 시선이동 분석을 통해 정량적인 자료로 제공한다는 점에서 기존 계절별 별자리 학습 연구와 차별성이 있으며, 초등학생의 계절별 별자리 학습과 관련된 지도방안에 도움을 줄 수 있다.
본 논문은 정답 색인 방법을 이용하여 응답 속도가 빠르고 정확한 백과사전 질의응답 시스템을 구현하는 방법을 제안한다. 논문에서 제안한 정답 색인 방법은 대상 문서에서 160여 개의 정답 유형 범주에 해당하는 정답 후보를 인식하고, 정답 후보와 색인 범주에 속하는 키워드를 색인단위로 정의하여 저장하였다. 특히 용언정보에 대해서는 LF(Logical Form)단위로 색인하여 색인 정확도를 높였다. 정답 랭킹에서는 사용자 질문에서 각 단어별로 문장 성분. 단어 가중치 정보 등을 이용하여, 필수단어를 산정하고 이를 정답랭킹의 방법으로 활용하였다. 이러한 방법론은 용언 정보를 활용해야 효과적인 백과사전이라는 문서 도메인의 특성을 반영하고, 빠른 질문 응답 시간을 보장하는 백과사전 질의응답 시스템에 적합하다.
기계 독해란 주어진 문서를 이해하고 문서 내의 내용에 대한 질문에 답을 추론하는 연구 분야이며, 기계 독해 문제의 종류 중에는 여러 개의 선택지에서 질문에 대한 답을 선택하는 객관식 형태의 문제가 존재한다. 이러한 자연어 처리 문제를 해결하기 위해 기존 연구에서는 사전학습된 언어 모델을 미세조정하여 사용하는 방법이 널리 활용되고 있으나, 학습 데이터가 부족한 환경에서는 기존의 일반적인 미세조정 방법으로 모델의 성능을 높이는 것이 제한적이며 사전학습된 의미론적인 정보를 충분히 활용하지 못하여 성능 향상에 한계가 있다. 이에 본 연구에서는 기존의 일반적인 미세조정 방법에 템플릿을 적용한 템플릿 기반 미세조정 방법을 통해 사전학습된 의미론적인 정보를 더욱 활용할 수 있도록 한다. 객관식 형태의 기계 독해 문제 중 하나인 토익 문제에 대해 모델을 템플릿 기반 미세조정 방법으로 실험을 진행하여 템플릿이 모델 학습에 어떠한 영향을 주는지 확인하였다.
이 연구에서 구현한 질문응답시스템은 한글 자연어로 된 텍스트와 질문을 자동으로 처리하는 지능형 정보시스템이다. 입력데이타는 스포츠관계 기사로 국한하였으며 프로그래밍 언어로는 코볼을 사용하였다. 이 시스템의 구문분석기는 격문법에 기초한 것으로서 어휘사전, 용언의 격프레임, 언어학적 규칙 등을 사용하여 문장을 분석한다. 본문검색과 사실검색이 모두 가능한 이 시스템에서는 질문에 대한 해답이 문장형태이거나 사실데이타 형태로 출력된다.
최근 사전학습 모델의 발달로 기계독해 시스템 성능이 크게 향상되었다. 하지만 기계독해 시스템은 주어진 단락에서 질문에 대한 정답을 찾기 때문에 단락을 직접 검색해야하는 실제 환경에서의 성능 하락은 불가피하다. 즉, 기계독해 시스템이 오픈 도메인 환경에서 높은 성능을 보이기 위해서는 높은 성능의 검색 모델이 필수적이다. 따라서 본 논문에서는 검색 모델의 성능을 보완해 줄 수 있는 오픈 도메인 기계독해를 위한 단락 재순위화 모델을 제안한다. 제안 모델은 합성곱 신경망을 이용하여 질문과 단락을 구절 단위로 표현했으며, N-gram 구절 사이의 상호 주의 집중을 통해 질문과 단락 사이의 관계를 효과적으로 표현했다. KorQuAD를 기반으로한 실험에서 제안모델은 MRR@10 기준 93.0%, Top@1 Precision 기준 89.4%의 높은 성능을 보였다.
본 연구는 제 7차 교육과정 중학교 "기술.가정" 교과서의 가정 영역에 제시된 질문을 Bloom의 인지적 영역의 수준에 따라 질문의 빈도, 수준, 위치를 분석하는 데 목적이 있다. 이에 임의로 5개의 출판사의 교과서를 선정해 총 15권을 분석하였다. 본 연구의 결과는 다음과 같다. 첫째, 가정 교과서에 포함된 Bloom의 인지적 영역 질문은 1학년(36.9%)이 가장 많았고, 2학년(33.6%), 3학년(29.5%)의 순이었으나 그 비율은 세 개의 학년이 비슷하였다. 가정 교과서에 제시된 질문을 Bloom의 인지적 영역에 따라 분류하였을 때 이해 질문(28.9%)과 적용 질문(28.3%)이 많았고, 지식(21.8%), 분석(8.6%), 종합(6.8%), 평가(5.6%) 수준의 질문은 그 비율이 점차 줄어들었다. 학년별로는 1학년과 3학년은 이해 질문과 적용 질문이 많았고, 2학년은 적용 질문이 가장 많은 비중을 차지했다. 둘째, 중학교 가정교과서에서 Bloom의 인지적 영역 질문의 위치는 읽기 후 질문이 49.2%로 가장 많았고, 읽기 중 질문이 36.7%, 읽기 전 질문은 14.1%를 차지하였다. 읽기 전 질문에서는 학습자들의 흥미를 불러일으키고 사전지식을 조성하고 활성화시키는 목적으로써 지식수준(11.4%), 이해수준(43.2%)의 질문이 주로 나타났고, 읽기 중 질문에서는 학습의 이해와 좀 더 폭 넓은 사고를 할 수 있는 수단으로 적용수준(36.7%)의 질문과 이해수준(25.5%)의 질문이 이용되고 있었다 읽기 후 질문에서는 지금까지 학습한 내용의 점검을 하는 역할로서의 질문인 지식수준(33.4%)과 이해수준(26.8%)의 질문이 많이 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.