• 제목/요약/키워드: 사전클러스터링

검색결과 77건 처리시간 0.018초

역투영 변환과 칼만 필터를 이용한 주행차선 추적 (A Lane Tracking Algorithm Using IPM and Kalman Filter)

  • 여재윤;구경모;차의영
    • 한국정보통신학회논문지
    • /
    • 제17권11호
    • /
    • pp.2492-2498
    • /
    • 2013
  • 본 논문에서는 차선 이탈 경고 장치 시스템에서 사용될 수 있는 주행차선 추적 방법을 제안한다. 먼저 역투영 변환을 이용해 차량에 부착된 카메라로 입력 받은 영상의 원근 효과가 제거된 조감도 영상을 생성한다. 그다음 차선의 형태학적 사전 지식을 이용하여 차선 검출에 적합한 특징들을 추출한다. 이후 블록 단위의 관심영역에 해당하는 차선 특징을 클러스터링하고 차선 유사도 함수를 이용함으로써 잡음이 제거된 차선 특징들을 얻을 수 있다. 이후 RANSAC(RANdom Sample Consensus) 알고리즘을 사용하여 차선 모델을 계산하고 칼만 필터를 이용하여 검출된 차선 모델을 추적한다. 제안하는 알고리즘은 고속도로 상의 다양한 환경에서 20ms 이내의 처리 속도와 90% 가량의 추적률을 얻을 수 있었다.

USN에서 보안을 적용한 에너지 효율적 클러스터링 설계 (An Energy-Efficient Clustering Design Apply Security Method in Ubiquitous Sensor Networks)

  • 남도현;민홍기
    • 전기전자학회논문지
    • /
    • 제11권4호
    • /
    • pp.205-212
    • /
    • 2007
  • 유비쿼터스 센서 네트워크(Ubiquitous Sensor Network)는 무선통신 기능을 가진 소형 센서들로 구성된 네트워크이다. 무선통신은 유선통신에 비해 데이터의 도청과 위조, 변조가 용이하다. 그러므로 센서 네트워크를 통해 전달되는 정보들의 신뢰성을 위한 보안 연구가 수행되어야 한다. 하지만 센서네트워크에 보안을 적용하기 위해서는 추가되는 에너지소모가 발생한다. 에너지 교체가 어려운 센서네트워크에서 추가적인 에너지소모는 중요한 문제이다. 본 논문은 센서네트워크에서 획득한 데이터를 안전하게 처리할 수 있는 에너지 효율적 클러스터 기반 라우팅을 제안한다. 제안방식은 초기에 형성된 클러스터는 고정시키고 클러스터 헤드노드만 교체하는 방식으로 최초에 생성 및 교환된 클러스터 키와 노드간 키가 다시 생성 및 교환되지 않게 하는 사전배포방식을 사용할 수 있다. 제안된 방법이 기존의 클러스터 기반 라우팅에 보안을 적용한 것보다 에너지 소모가 29.2% 적게 소모됨을 모의실험을 통하여 확인하였다.

  • PDF

모바일 Ad-hoc 네트워크를 위한 클러스터 기반 멀티캐스트 라우팅 (A Cluster-Based Multicast Routing for Mobile Ad-hoc Networks)

  • 안병구;김도현
    • 대한전자공학회논문지TC
    • /
    • 제42권9호
    • /
    • pp.29-40
    • /
    • 2005
  • 본 논문에서 우리는 모바일 ad-hoc 네트워크를 위한 이동성을 사용하는 클러스터 기반의 멀티캐스트 라우팅(CMR: Cluster-based Multicast Routing) 방법을 제안한다. CMR의 주요한 특징은 다음처럼 요약 된다. a) 이동성 기반 클러스터링과 효과적으로 안정성과 확장성을 지원하기 위한 그룹 기반의 계층적 구조, b) 토폴로지의 견고함과 전송의 효율성을 동시에 지원하기 위한 그룹 기반의 메쉬 구조와 전송 트리 개념, c) 사전 결정적 기술들의 낮은 경로 수행 지연과 요구기반 방법의 낮은 오버헤드를 제공하는 개념의 조합. CM의 성능평가는 모델렇과 시뮬레이션을 통하여 이루어진다. 멀티캐스트 라우팅 프로토콜의 효율성 측정은 노드의 이동성, 멀티캐스트 그룹 사이즈, 송신자 노드 수 등의 함수로써 패킷 전송률, 확장성, 제어 오버헤드, 소스와 목적지 노드 사이의 시간 지연 등의 파라미터들을 사용한다.

클러스터링과 마르코프 랜덤 필드를 이용한 배경 모델링 기법 제안 (Improving Clustering-Based Background Modeling Techniques Using Markov Random Fields)

  • 한희얼;박수빈
    • 대한전자공학회논문지SP
    • /
    • 제48권1호
    • /
    • pp.157-165
    • /
    • 2011
  • 본 논문에서는 마르코프 랜덤 필드(Markov random fields: MRF) 기반으로 배경을 모델링하는 방식과 함께 관련 파라미터들을 추정하는 알고리즘을 제안한다. 화소 기반의 배경 모델링 기법은 인근 화소 간의 연관성을 고려하지 않고 화소 단위의 시간적 변화에 대한 통계적 특성에 주로 의존하므로 판정 오류를 줄이는데 한계가 있다. 제안 알고리즘은 화소 기반으로 배경 모델을 일차적으로 수행한 다음 MRF를 이용하여 시공간적으로 인근한 화소 간의 상호 의존성을 활용하여 배경모텔의 정확도를 향상시키는데 그 목적을 두고 있다. MRF는 기본적으로 파라미터의 크기에 매우 민감하므로 기존의 MRF 기반 알고리즘은 이미지에 따라 적절한 값을 사전에 구하여 적용하고 있다. 제안한 방식은 초기에 임의의 파라미터로 배경/전경 상태변수를 구한 후에 이의 통계적 특성을 이용하여 파라미터들을 추정하고 추정된 파라미터를 적용하여 상대변수를 재차 구하는 과정을 반복함으로써 최적의 파라미터에 적응적으로 수렴하도록 조정한다. 실내외의 다양한 환경에서 촬영한 비디오를 이용하여 제안한 방식 성능을 확인한다.

공격 메일 식별을 위한 비정형 데이터를 사용한 유전자 알고리즘 기반의 특징선택 알고리즘 (Feature-selection algorithm based on genetic algorithms using unstructured data for attack mail identification)

  • 홍성삼;김동욱;한명묵
    • 인터넷정보학회논문지
    • /
    • 제20권1호
    • /
    • pp.1-10
    • /
    • 2019
  • 빅 데이터에서 텍스트 마이닝은 많은 수의 데이터로부터 많은 특징 추출하기 때문에, 클러스터링 및 분류 과정의 계산 복잡도가 높고 분석결과의 신뢰성이 낮아질 수 있다. 특히 텍스트마이닝 과정을 통해 얻는 Term document matrix는 term과 문서간의 특징들을 표현하고 있지만, 희소행렬 형태를 보이게 된다. 본 논문에서는 탐지모델을 위해 텍스트마이닝에서 개선된 GA(Genetic Algorithm)을 이용한 특징 추출 방법을 설계하였다. TF-IDF는 특징 추출에서 문서와 용어간의 관계를 반영하는데 사용된다. 반복과정을 통해 사전에 미리 결정된 만큼의 특징을 선택한다. 또한 탐지모델의 성능 향상을 위해 sparsity score(희소성 점수)를 사용하였다. 스팸메일 세트의 희소성이 높으면 탐지모델의 성능이 낮아져 최적화된 탐지 모델을 찾기가 어렵다. 우리는 fitness function에서 s(F)를 사용하여 희소성이 낮고 TF-IDF 점수가 높은 탐지모델을 찾았다. 또한 제안된 알고리즘을 텍스트 분류 실험에 적용하여 성능을 검증하였다. 결과적으로, 제안한 알고리즘은 공격 메일 분류에서 좋은 성능(속도와 정확도)을 보여주었다.

위치 분포 및 그래프 절단에 의한 모발 분류와 영역 분할 (Hair Classification and Region Segmentation by Location Distribution and Graph Cutting)

  • 김용길;문경일
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권3호
    • /
    • pp.1-8
    • /
    • 2022
  • 최근 소개된 구글 MediaPipe의 모발 분할 방식은 실시간 모바일 애플리케이션을 위해 특별히 설계된 단일 카메라 입력에서 신경망 기반 모발 분할을 위한 새로운 접근 방식을 제시한다. 상대적으로 작은 신경망으로 가상 머리카락 다시 칠하기와 같은 증강 현실 효과에 매우 적합한 고품질 머리카락 분할 마스크를 생성한다. 그렇지만, 모발 스타일 또는 모발 영역에 잡음이 있는 경우에 모발 분할 정확도가 떨어지는 문제점들이 있다. 이에 본 연구에서는 지정된 라벨에서 모발 위치와 모발 색상 가능성의 추정된 사전 분포에 따라 이미지의 에너지 함수를 구성하고, 이것을 그래프 절단 알고리즘에 따라 최적화시키는 방식으로 초기 모발 영역을 얻는 방식을 도입한다. 그런 다음에, 초기 모발 영역에 클러스터링 알고리즘과 사후 처리 기법을 적용하여 최종 모발 영역을 정밀하게 분할 할 수 있도록 한다. 제안된 방식은 MediaPipe의 모발 분할 파이프라인에 적용된다.

Improving Accuracy of Chapter-level Lecture Video Recommendation System using Keyword Cluster-based Graph Neural Networks

  • Purevsuren Chimeddorj;Doohyun Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권7호
    • /
    • pp.89-98
    • /
    • 2024
  • 본 논문은 챕터 수준의 강의 동영상 추천 시스템에 있어서 추천의 정확도와 처리속도 간의 균형문제, 즉, 추천 정확도를 향상시키려면 처리 속도가 저하되고, 반대로 처리 속도를 높일 경우 정확도가 감소하는 문제에 대하여 연구한다. 본 논문에서는 이의 해결을 위하여 TF-IDF, K-Means++ Clustering, Graph Neural Network(GNN) 등 다양한 기법을 복합적으로 활용하는 방법을 제안한다. 즉, 챕터들의 유사성을 바탕으로 클러스터를 사전에 구성함으로써 검색 시의 계산량을 줄여 속도를 향상시키면서도, 클러스터를 노드로 하는 그래프에 대하여 GNN을 적용함으로써 추천의 정확도를 향상시키는 방법을 제안한다. 실험 결과 GNN을 사용한 경우 추천의 정확도가 MRR 지표에서 약 19.7% 증가하였으며, 유사도 기반의 정밀도에 있어서 약 27.7% 증가하는 결과를 확인할 수 있었다. 이를 통해 학습자의 질의에 보다 적합한 동영상 챕터를 추천하는 학습시스템 구축에 기여할 것으로 기대한다.

무선 인터넷 프록시 서버 클러스터에서 호스트 부하 정보에 기반한 동적 부하 분산 방안 (A Dynamic Load Balancing Scheme based on Host Load Information in a Wireless Internet Proxy Server Cluster)

  • 곽후근;정규식
    • 한국정보과학회논문지:정보통신
    • /
    • 제33권3호
    • /
    • pp.231-246
    • /
    • 2006
  • 무선 인터넷 프록시 서버 클러스터에서 부하 분산기는 사용자의 요청을 각 서버로 분산시키는 역할을 한다. 리눅스 가상 서버(LVS: Linux Virtual Server)는 소프트웨어적으로 사용되는 부하 분산기로써 여러 가지 스케줄링 방식들을 지원한다. LVS 스케줄링 방식에는 라운드 로빈 방식, 해슁 기반 방식, 또는 서버와 부하 분산기 사이에서 서버로 연결된 커넥션 개수를 이용하는 방식이 있다. 일부 향상된 방법에서는 각 서버별로 서버의 최고 성능 범위 안에서 허용된 커넥션 개수의 상한값과 하한값을 사전에 결정하여 이를 스케줄링 시에 적용한다. 그러나, 이러한 스케줄링 방법들에서는 서버의 실시간 부하 정보들이 부하 분산에 반영되지 않는다. 본 논문에서는 서버 부하 정보에 기반한 동적 스케줄링 방식을 제안한다. 제안된 방식에서는 부하 분산기가 서버의 실시간 CPU 부하 정보를 바탕으로 가장 적은 부하를 가지는 서버에 새로운 요청을 할당한다. 16대로 구성된 클러스터링 컴퓨터와 정적 컨텐츠(이미지와 HTML)를 가지고 실험을 수행하였다. 실험결과 CPU를 많이 사용하는 요청과 호스트의 성능이 다른 경우에 대하여 종래의 스케줄링 방식보다 성능이 향상됨을 확인하였다.

스마트팜 빅데이터 분석을 위한 이기종간 심층학습 기법 연구 (A Study on Deep Learning Methodology for Bigdata Mining from Smart Farm using Heterogeneous Computing)

  • 민재기;이동훈
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2017년도 춘계공동학술대회
    • /
    • pp.162-162
    • /
    • 2017
  • 구글에서 공개한 Tensorflow를 이용한 여러 학문 분야의 연구가 활발하다. 농업 시설환경을 대상으로 한 빅데이터의 축적이 증가함과 아울러 실효적인 정보 획득을 위한 각종 데이터 분석 및 마이닝 기법에 대한 연구 또한 활발한 상황이다. 한편, 타 분야의 성공적인 심층학습기법 응용사례에 비하여 농업 분야에서의 응용은 초기 성장 단계라 할 수 있다. 이는 농업 현장에서 취득한 정보의 난해성 및 완성도 높은 생육/환경 모델링 정보의 부재로 실효적인 전과정 처리 기술 도출에 소요되는 시간, 비용, 연구 환경이 상대적으로 부족하기 때문일 것이다. 특히, 센서 기반 데이터 취득 기술 증가에 따라 비약적으로 방대해진 수집 데이터를 시간 복잡도가 높은 심층 학습 모델링 연산에 기계적으로 단순 적용할 경우 시간 효율적인 측면에서 성공적인 결과 도출에 애로가 있을 것이다. 매우 높은 시간 복잡도를 해결하기 위하여 제시된 하드웨어 가속 기능의 경우 일부 개발환경에 국한이 되어 있다. 일례로, 구글의 Tensorflow는 오픈소스 기반 병렬 클러스터링 기술인 MPICH를 지원하는 알고리즘을 공개하지 않고 있다. 따라서, 본 연구에서는 심층학습 기법 연구에 있어서, 예상 가능한 다양한 자원을 활용하여 최대한 연산의 결과를 빨리 도출할 수 있는 하드웨어적인 접근 방법을 모색하였다. 호스트에서 수행하는 일방적인 학습 알고리즘과 달리 이기종간 심층 학습이 가능하기 위해선 우선, NFS(Network File System)를 이용하여 데이터 계층이 상호 연결이 되어야 한다. 이를 위해서 고속 네트워크를 기반으로 한 NFS의 이용이 필수적이다. 둘째로 제한된 자원의 한계를 극복하기 위한 메모 공유 라이브러리가 필요하다. 셋째로 이기종간 프로세서에 최적화된 병렬 처리용 컴파일러를 이용해야 한다. 가장 중요한 부분은 이기종간의 처리 능력에 따른 작업을 고르게 분배할 수 있는 작업 스케쥴링이 수행되어야 하며, 이는 처리하고자 하는 데이터의 형태에 따라 매우 가변적이므로 해당 데이터 도메인에 대한 엄밀한 사전 벤치마킹이 수행되어야 한다. 이러한 요구조건을 대부분 충족하는 Open-CL ver1.2(https://www.khronos.org/opencl/)를 이용하였다. 최신의 Open-CL 버전은 2.2이나 본 연구를 위하여 준비한 4가지 이기종 시스템에서 모두 공통적으로 지원하는 버전은 1.2이다. 실험적으로 선정된 4가지 이기종 시스템은 1) Windows 10 Pro, 2) Linux-Ubuntu 16.04.4 LTS-x86_64, 3) MAC OS X 10.11 4) Linux-Ubuntu 16.04.4 LTS-ARM Cortext-A15 이다. 비교 분석을 위하여 NVIDIA 사에서 제공하는 Pascal Titan X 2식을 SLI로 구성한 시스템을 준비하였다. 개별 시스템에서 별도로 컴파일 된 바이너리의 이름을 통일하고, 개별 시스템의 코어수를 동일하게 균등 배분하여 100 Hz의 데이터로 입력이 되는 온도 정보와 조도 정보를 입력으로 하고 이를 습도정보에 Linear Gradient Descent Optimizer를 이용하여 Epoch 10,000회의 학습을 수행하였다. 4종의 이기종에서 총 32개의 코어를 이용한 학습에서 17초 내외로 연산 수행을 마쳤으나, 비교 시스템에서는 11초 내외로 연산을 마치는 결과가 나왔다. 기보유 하드웨어의 적절한 활용이 가능한 심층학습 기법에 대한 연구를 지속할 것이다

  • PDF

대칭성 분석과 레벨셋을 이용한 자기공명 뇌영상의 자동 종양 영역 분할 방법 (Automatic Tumor Segmentation Method using Symmetry Analysis and Level Set Algorithm in MR Brain Image)

  • 김보람;박근혜;김욱현
    • 융합신호처리학회논문지
    • /
    • 제12권4호
    • /
    • pp.267-273
    • /
    • 2011
  • 본 논문은 자기공명 뇌영상을 대상으로 뇌종양 영역을 자동으로 분할하기 위한 방법을 제안한다. 정상적인 뇌영상은 좌우로 대칭인 특징을 지니는 반면에 종양이 존재하는 뇌영상은 종양세포와 부종 및 괴사로 인해 비대칭적인 특징을 가진다. 본 논문에서는 이러한 대칭성을 뇌영상내에 종양영역의 존재 유무를 판별할 수 있는 기준으로 이용한다. 대칭성 분석을 위해서 뇌영역의 윤곽선 정보를 이용해 중심축을 생성하였으며 이는 사전정보를 이용하지 않고 영상의 자체 정보만을 해석해서 중심축을 추출할 수 있다는 점에서 기존의 영상 정합을 통해 해부학적 위치 정보를 추출하고 이를 이용하여 중심축을 찾는 방법과 구별된다. 자기공명 영상에서 정상뇌의 조직은 크게 3가지 클러스터로 분할되며 각 클러스터가 포함하는 영역은 백질과 회백질영역을 포함하는 뇌 실질영역, 뇌척수액(csf)영역, 두개골, 지방 및 뇌막 영역 등으로 나뉜다. 종양이 포함된 영상은 종양과 부종 및 괴사 영역이 추가적으로 존재하며 이는 클러스터링을 이용한 분할을 통해서 구분될 수 있다. 분할된 종양 영역의 중심점은 다음 슬라이스의 종양 영역의 경계를 검출하기 위한 레벨셋 알고리즘에 적용되어 전체 볼륨의 종양 영역의 경계선을 추출하기 위한 초기 시드로 이용된다. 본 논문에서는 3차원 볼륨의 영상(슬라이스)중에서 종양 영역이 존재하는 슬라이스의 종양 영역을 분할하여 이후의 슬라이스에서는 분할작업을 수행하지 않고 영역의 경계선만 추출한다. 자카드 지수와 처리 시간의 비교 분석을 통해 기존의 방법과 비슷한 성능과 빠른 속도로 종양 영역을 분할할 수 있다는 것을 보인다.