계절변동조정방법인 X-12-ARIMA방법을 이용할 때에는 우리 실정에 적합한 옵션을 선택하고, 우리만에 특수한 명절과 조업일수영향을 사전에 조정해야한다. 본고에서는 명절과 조업일수영향을 측정하는 모형을 설정하고, 이것으로 추정된 사전조정요인을 원계열에서 제거했을 때 계절변동 및 계절변동조정계열의 안정성이 향상되었는가를 진단하고, 분류별로 적합한 X-12-ARIMA방법의 옵션을 제안하였다.
기계 독해란 주어진 문서를 이해하고 문서 내의 내용에 대한 질문에 답을 추론하는 연구 분야이며, 기계 독해 문제의 종류 중에는 여러 개의 선택지에서 질문에 대한 답을 선택하는 객관식 형태의 문제가 존재한다. 이러한 자연어 처리 문제를 해결하기 위해 기존 연구에서는 사전학습된 언어 모델을 미세조정하여 사용하는 방법이 널리 활용되고 있으나, 학습 데이터가 부족한 환경에서는 기존의 일반적인 미세조정 방법으로 모델의 성능을 높이는 것이 제한적이며 사전학습된 의미론적인 정보를 충분히 활용하지 못하여 성능 향상에 한계가 있다. 이에 본 연구에서는 기존의 일반적인 미세조정 방법에 템플릿을 적용한 템플릿 기반 미세조정 방법을 통해 사전학습된 의미론적인 정보를 더욱 활용할 수 있도록 한다. 객관식 형태의 기계 독해 문제 중 하나인 토익 문제에 대해 모델을 템플릿 기반 미세조정 방법으로 실험을 진행하여 템플릿이 모델 학습에 어떠한 영향을 주는지 확인하였다.
본 논문에서는 학습을 이용한 발음 변이 모델링을 통해 특정 영역에 최적화된 발음 사전 자동 생성의 방법을 제시하였다. 학습 방법을 이용한 발음 변이 모델링의 오류를 최소화 하기 위하여 본 논문에서는 발음 변이 규칙의 적응 기법을 도입하였다. 발음 변이 규칙의 적응은 대용량 음성 말뭉치에서 발음 변이 규칙을 유도한 후, 상대적으로 작은 용량의 음성 말뭉치에서 유도한 규칙과의 결합을 통해 이루어 진다. 본 논문에서 사용된 발음 사전은 해당 형태소의 앞 뒤 음소 문맥의 음운 현상을 반영한 발음 사전이며, 학습 방법으로 얻어진 발음 변이 규칙을 대용량 문자 말뭉치에 적용하여 해당 형태소의 발음을 자동 생성하였다. 발음 사전의 평균 발음의 수는 적용된 발음 변이 규칙의 확률 값들의 한계 값 조정에 의해 이루어졌다. 기존의 지식 기반의 발음 사전과 비교 할 때, 본 방법론으로 작성된 발음 사전을 이용한 대화체 음성 인식 실험에서 0.8%의 단어 오류율(WER)이 감소하였다. 또한 사전에 포함된 형태소의 평균 발음 변이 수에서도 기존의 방법론에서 보다 5.6% 적은 수에서 최상의 성능을 보였다.
최근 자연어처리 분야에서는 BERT, RoBERTa, 그리고 BART와 같은 사전 학습된 언어 모델 (Pre-trained Language Models, PLM) 기반 미세 조정 학습을 통하여 여러 하위 과업에서 좋은 성능을 거두고 있다. 이는 사전 학습된 언어 모델 및 데이터 집합의 크기, 그리고 모델 구성의 중요성을 보여주며 대규모 사전 학습된 언어 모델이 각광받는 계기가 되었다. 하지만, 거대한 모델의 크기로 인하여 실제 산업에서 쉽게 쓰이기 힘들다는 단점이 명백히 존재함에 따라 최근 매개변수 효율적인 미세 조정 및 Few-Shot 학습 연구가 많은 주목을 받고 있다. 본 논문은 Prompt tuning, Prefix tuning와 프롬프트 기반 미세 조정 (Prompt-based fine-tuning)을 결합한 Few-Shot 학습 연구를 제안한다. 제안한 방법은 미세 조정 ←→ 사전 학습 간의 지식 격차를 줄일 뿐만 아니라 기존의 일반적인 미세 조정 기반 Few-Shot 학습 성능보다 크게 향상됨을 보인다.
미세 조정은 대부분의 연구에서 사전학습 모델을 위한 표준 기법으로 활용되고 있으나, 최근 초거대 모델의 등장과 환경 오염 등의 문제로 인해 더 효율적인 사전학습 모델 활용 방법이 요구되고 있다. 패턴 추출 학습은 사전학습 모델을 효율적으로 활용하기 위해 제안된 방법으로, 본 논문에서는 한국어 주장 탐지 및 입장 분류를 위해 패턴 추출 학습을 활용하는 모델을 구현하였다. 우리는 기존 미세 조정 방식 모델과의 비교 실험을 통해 본 논문에서 구현한 한국어 주장 탐지 및 입장 분류 모델이 사전학습 단계에서 학습한 모델의 내부 지식을 효과적으로 활용할 수 있음을 보였다.
본 연구에서는 계절조정을 위한 사전조정 단계 중 명절효과 조정방법에 이용되는 파급유형을 소개하고, 기존의 파급유형보다 다양하고 유연한 형태를 갖는 새로운 파급유형을 제안하였다. 그리고 명절 전후의 시계열 파급형태가 같지 않다는 현실적인 가정 하에 기존의 파급유형과 새로 제안한 파급유형을 비교하였다. 비교연구에서는 기존의 것과 새로 제안된 것으로 가능한 모든 파급유형을 구성한 후 RegARIMA로 효과를 추정하였으며 추정과정에는 우리나라의 산업별 생산지수와 출하지수 자료를 사용하였다.
통계적인 방법으로 병렬 코퍼스(parallel corpus)로부터 사전정보를 추출해 내는 정렬 시스템에 대한 연구가 세계 여러곳에서 진행되고 있다(신중호 1996; Dagan 1996; Fung 1995; Kupiec 1993). 그 결과로 만들어진 사전정보는 유용한 대역어와 대역 확률을 포함하고 있지만, 불필요하거나 잘못된 요소들도 많이 포함되어 있어 재조정 작업이 필요하다. 이는 사전정보를 직관적으로 확인함으로써 조정을 할 수도 있지만, 좀 더 정확한 조정을 위해 각각의 사전정보(정렬의 결과)가 코퍼스의 어떤 문장에서 나온 것인가 등을 확인할 필요가 있다. 정렬 워크벤치는 이와 같은 작업을 효율적으로 처리할 수 있도록 만들어졌으며, 현재 구현되어 작동되고 있다. 본 논문에서는 정렬 워크벤치를 위해 필요한 정렬시스템의 변형과 사전작업의 편의를 위해 제공되어져야 하는 기능 등에 관하여 설명하고, 간단한 평가 결과를 설명한다.
질의응답 (Question Answering)은 주어진 질문을 이해하여 그에 맞는 답변을 생성하는 자연어 처리 분야의 핵심적인 기계 독해 작업이다. 현재 대다수의 자연어 이해 작업은 사전학습 언어 모델에 미세 조정 (finetuning)하는 방식으로 학습되고, 질의응답 역시 이러한 방법으로 진행된다. 하지만 미세 조정을 통한 전이학습은 사전학습 모델의 크기가 커질수록 전이학습이 잘 이루어지지 않는다는 단점이 있다. 게다가 많은 양의 파라미터를 갱신한 후 새로운 가중치들을 저장하여야 한다는 용량의 부담이 존재한다. 본 연구는 최근 대두되는 deep prompt tuning 방법론을 한국어 추출형 질의응답에 적용하여, 미세 조정에 비해 학습시간을 단축시키고 적은 양의 파라미터를 활용하여 성능을 개선했다. 또한 한국어 추출형 질의응답에 최적의 prompt 길이를 최적화하였으며 오류 분석을 통한 정성적인 평가로 deep prompt tuning이 모델 예측에 미치는 영향을 조사하였다.
사전 학습 모델을 특정 데이터에 미세 조정할 때, 최대 길이는 사전 학습에 사용한 최대 길이 파라미터를 그대로 사용해야 한다. 이는 상대적으로 긴 시퀀스의 처리를 요구하는 일부 작업에서 단점으로 작용한다. 본 연구는 상대적으로 긴 시퀀스의 처리를 요구하는 질의 응답(Question Answering, QA) 작업에서 사전 학습 모델을 활용할 때 발생하는 시퀀스 길이 제한에 따른 성능 저하 문제를 극복하는 방법론을 제시한다. KorQuAD v1.0과 AIHub에서 확보한 데이터셋 4종에 대하여 BERT와 RoBERTa를 이용해 성능을 검증하였으며, 실험 결과, 평균적으로 길이가 긴 문서를 보유한 데이터에 대해 성능이 향상됨을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.