• Title/Summary/Keyword: 사전전위요소

Search Result 1, Processing Time 0.014 seconds

One-probe P300 based concealed information test with machine learning (기계학습을 이용한 단일 관련자극 P300기반 숨김정보검사)

  • Hyuk Kim;Hyun-Taek Kim
    • Korean Journal of Cognitive Science
    • /
    • v.35 no.1
    • /
    • pp.49-95
    • /
    • 2024
  • Polygraph examination, statement validity analysis and P300-based concealed information test are major three examination tools, which are use to determine a person's truthfulness and credibility in criminal procedure. Although polygraph examination is most common in criminal procedure, but it has little admissibility of evidence due to the weakness of scientific basis. In 1990s to support the weakness of scientific basis about polygraph, Farwell and Donchin proposed the P300-based concealed information test technique. The P300-based concealed information test has two strong points. First, the P300-based concealed information test is easy to conduct with polygraph. Second, the P300-based concealed information test has plentiful scientific basis. Nevertheless, the utilization of P300-based concealed information test is infrequent, because of the quantity of probe stimulus. The probe stimulus contains closed information that is relevant to the crime or other investigated situation. In tradition P300-based concealed information test protocol, three or more probe stimuli are necessarily needed. But it is hard to acquire three or more probe stimuli, because most of the crime relevant information is opened in investigative situation. In addition, P300-based concealed information test uses oddball paradigm, and oddball paradigm makes imbalance between the number of probe and irrelevant stimulus. Thus, there is a possibility that the unbalanced number of probe and irrelevant stimulus caused systematic underestimation of P300 amplitude of irrelevant stimuli. To overcome the these two limitation of P300-based concealed information test, one-probe P300-based concealed information test protocol is explored with various machine learning algorithms. According to this study, parameters of the modified one-probe protocol are as follows. In the condition of female and male face stimuli, the duration of stimuli are encouraged 400ms, the repetition of stimuli are encouraged 60 times, the analysis method of P300 amplitude is encouraged peak to peak method, the cut-off of guilty condition is encouraged 90% and the cut-off of innocent condition is encouraged 30%. In the condition of two-syllable word stimulus, the duration of stimulus is encouraged 300ms, the repetition of stimulus is encouraged 60 times, the analysis method of P300 amplitude is encouraged peak to peak method, the cut-off of guilty condition is encouraged 90% and the cut-off of innocent condition is encouraged 30%. It was also conformed that the logistic regression (LR), linear discriminant analysis (LDA), K Neighbors (KNN) algorithms were probable methods for analysis of P300 amplitude. The one-probe P300-based concealed information test with machine learning protocol is helpful to increase utilization of P300-based concealed information test, and supports to determine a person's truthfulness and credibility with the polygraph examination in criminal procedure.