• 제목/요약/키워드: 사전전위요소

검색결과 1건 처리시간 0.015초

기계학습을 이용한 단일 관련자극 P300기반 숨김정보검사 (One-probe P300 based concealed information test with machine learning)

  • 김혁;김현택
    • 인지과학
    • /
    • 제35권1호
    • /
    • pp.49-95
    • /
    • 2024
  • 국내 형사소송절차에서 진술의 진위여부 확인을 위해 사용하는 도구는 폴리그래프검사, 진술타당도분석, P300 기반 숨김정보검사 등이 있고, 이 중에서 폴리그래프검사의 사용빈도가 다른 도구들에 비하여 높다. 하지만, 검사결과를 뒷받침해 줄 수 있는 근거의 부족으로 인하여 재판과정에서 증거채택 가능성이 낮다. 폴리그래프검사를 뒷받침해 줄 수 있는 방법으로, 사전연구가 풍부한 P300기반 숨김정보검사가 주목을 받아 왔지만, 기존의 검사기법은 두 가지 제한점이 있어 실제 사건에서의 활용도는 낮은 편이다. 첫째, 검사에 필요한 관련자극만 3개 또는 6개 등, 사전에 노출되지 않은 정보가 다수 필요하기 때문에 실제 사건에서 사용 가능성이 낮다. 둘째, 기존의 P300기반 숨김정보검사 프로토콜에서는 관련자극과 무관련자극에 대한 P300요소 전위값을 명확하게 구분하기 위하여 오드볼패러다임을 사용하기 때문에 무관련자극에 대한 P300요소 전위값이 과소 추정될 가능성이 있다. 본 연구에서는 검사의 사용 가능성을 높이기 위하여 사전에 노출되지 않은 정보가 단 하나만 있어도 검사가 가능한 단일 관련자극을 사용하는 수정된 P300기반 숨김정보검사 프로토콜을 탐색하였고, 오드볼패러다임 사용으로 인한 무관련자극에 대한 P300요소 전위값이 과소 추정되는 문제를 보완하기 위하여 다양한 기계학습의 분류 알고리즘을 비교하였다. 연구결과 단일 관련자극으로 여성과 남성의 얼굴자극을 사용할 경우, 자극은 400ms 지속시간으로 60회 제시하고, 절단값을 유죄집단은 90%로 무죄집단은 30%로 하여 정점-정점 방법으로 P300요소 전위값을 분석하는 것이 적합함을 확인하였다. 단어자극의 경우, 지속시간을 300ms로 60회 제시하고, P300요소 전위값 분석방법은 얼굴자극과 동일하게 시행하는 것이 적합하다는 것을 확인하였다. 또한 관련자극과 무관련자극에 대한 정점-정점 P300요소 전위값을 6가지 기계학습 분류 알고리즘을 사용하여 분석한 결과, 로지스틱 회귀(LR), 선형 판별 분석(LDA), K-최근접 이웃(KNN) 알고리즘이 관련자극과 무관련자극의 분류에 적합하다는 것을 확인하였다.