• Title/Summary/Keyword: 사전적 재난대응

Search Result 99, Processing Time 0.023 seconds

Remote Sensing and GIS for Earth & Environmental Disasters: The Current and Future in Monitoring, Assessment, and Management 2 (원격탐사와 GIS를 이용한 지구환경재해 관측과 관리 기술 현황 2)

  • Yang, Minjune;Kim, Jae-Jin;Ryu, Jong-Sik;Han, Kyung-soo;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.811-818
    • /
    • 2022
  • Recently, the number of natural and environmental disasters is rapidly increasing due to extreme weather caused by climate change, and the scale of economic losses and damage to human life is increasing accordingly. In addition, with urbanization and industrialization, the characteristics and scale of extreme weather appearance are becoming more complex and large in different ways from the past, and need for remote sensing and artificial intelligence technology for responding and managing global environmental disasters. This special issue investigates environmental disaster observation and management research using remote sensing and artificial intelligence technology, and introduces the results of disaster-related studies such as drought, flood, air pollution, and marine pollution, etc. in South Korea performed by the i-SEED (School of Integrated Science for Sustainable Earth and Environmental Disaster at Pukyong National University). In this special issue, we expect that the results can contribute to the development of monitoring and management technologies that may prevent environmental disasters and reduce damage in advance.

Experimental Study on Moisture Content According to Addition of Surfactants (계면활성제 첨가에 따른 함수율에 관한 실험적 연구)

  • Kim, Nam-Kyun;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.29 no.2
    • /
    • pp.79-83
    • /
    • 2015
  • The fire accident is a representative type of disaster that can largely impact on business. Therefore, precautionary measures and rapid initial response is very important when a disaster occurs. The storage of porous combustibles is inevitable in coal yard, plywood processing industry, and others that are currently operating. Initial fire fighting of fire and identifying the ignition point in such a porous combustible storage space are so difficult that if the initial response is failed, being led to deep-seated fire, surface fire is likely to result in secondary damage. In addition, deep-seated fire can cause personal injuries and property damage due to a large amount of toxic gases and reignition. Therefore damage reduction measures is required around the storage space to handle a porous flammable. Improving the penetration performance of the concentration of the surfactant is carried out as underlying study, which is about an deep-seated fire extinguishing efficiency augmentation when using wetting agents. The porous materials used in the experiments is radiata pine wood flour, which occupies more than 75% of the domestic wood market. Fire fighting water is selected as Butyl Di Glycol (BDG), which is being used for infiltration extinguishing agent, and the experiment was carried out by producing a standard solution. The experiment was carried out on the basis of the Deep-Seated Fire Test of NFPA 18. The amount of watering, porous material to the internal amount of penetration, and runoff measurement out of the porous material was conducted. According to experimental results, as the surface tension is reduced, the surfactant concentration macroscopic penetration rate decreases, but infiltration to a porous material is shown to have growth characteristics.

An One-stop mobile support system for the expression and spread of earthquake information based on evaluation (평가 기반 지진 정보 표출 및 확산을 위한 원스톱 모바일 지원 확산 시스템)

  • Lee, Yoonlae;Lee, Yunkyung;Jang, Yeonyi;Kim, Hyunah;Park, Minjae
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.4
    • /
    • pp.43-50
    • /
    • 2021
  • As the frequency of earthquakes in some regions including Pohang City has increased in recent years, the need for countermeasures against earthquakes in Korea is demanded from various aspects. Liquefaction occurred after the earthquake, and local residents' anxiety increased due to the lack of preparation for and coping with the earthquake. In order to cope with these phenomena and relieve the anxiety of local residents, we analyze the limitations of the existing earthquake response system and come up with a method to solve them. Therefore, we propose, implement, and prove the possibility of a one-stop mobile support diffusion system capable of expressing and spreading evaluation-based earthquake information that can actively cope with disaster situations.

Analysis of Building Emergency Evacuation Process with Interactions in Human Behaviors (화재 시 재실자 행동의 상호 작용을 고려한 건물 피난 행태 분석)

  • Choi, Minji;Park, Moonseo;Lee, Hyun-Soo;Hwang, Sungjoo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.6
    • /
    • pp.49-60
    • /
    • 2013
  • Evacuation process has been considered as one of the most important elements to be managed in public facilities. Although the importance is highlighted through numerous literatures, disaster evacuation planning, particularly fire accidents, faces a number of human behavior related limitations for a similar application to different types of facilities/occupants. To overcome the obstacles including complexity in human behaviors, a number of simulation techniques with limited consideration on human behaviors are utilized to predict foreseeable problems in evacuation process. Therefore, this research aims to propose system dynamics models incorporating human behaviors considering different types of occupants under disaster evacuation events. Analysis on emergent human behaviors such as group forming and interactions under urgent situation are conducted based on the main stream theories in social science field. The results suggest the influences of human behavior factors including cooperative intention, information sharing, and mobility change to evacuation behavior. The implications are expected to provide safety consideration at planning/designing phase of buildings and help facility safety managers for evacuation planning with more realistic management approaches.

Big data mining for natural disaster analysis (자연재해 분석을 위한 빅데이터 마이닝 기술)

  • Kim, Young-Min;Hwang, Mi-Nyeong;Kim, Taehong;Jeong, Chang-Hoo;Jeong, Do-Heon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.5
    • /
    • pp.1105-1115
    • /
    • 2015
  • Big data analysis for disaster have been recently started especially to text data such as social media. Social data usually supports for the final two stages of disaster management, which consists of four stages: prevention, preparation, response and recovery. Otherwise, big data analysis for meteorologic data can contribute to the prevention and preparation. This motivated us to review big data technologies dealing with non-text data rather than text in natural disaster area. To this end, we first explain the main keywords, big data, data mining and machine learning in sec. 2. Then we introduce the state-of-the-art machine learning techniques in meteorology-related field sec. 3. We show how the traditional machine learning techniques have been adapted for climatic data by taking into account the domain specificity. The application of these techniques in natural disaster response are then introduced (sec. 4), and we finally conclude with several future research directions.

Exploring the power of physics-informed neural networks for accurate and efficient solutions to 1D shallow water equations (물리 정보 신경망을 이용한 1차원 천수방정식의 해석)

  • Nguyen, Van Giang;Nguyen, Van Linh;Jung, Sungho;An, Hyunuk;Lee, Giha
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.939-953
    • /
    • 2023
  • Shallow water equations (SWE) serve as fundamental equations governing the movement of the water. Traditional numerical approaches for solving these equations generally face various challenges, such as sensitivity to mesh generation, and numerical oscillation, or become more computationally unstable around shock and discontinuities regions. In this study, we present a novel approach that leverages the power of physics-informed neural networks (PINNs) to approximate the solution of the SWE. PINNs integrate physical law directly into the neural network architecture, enabling the accurate approximation of solutions to the SWE. We provide a comprehensive methodology for formulating the SWE within the PINNs framework, encompassing network architecture, training strategy, and data generation techniques. Through the results obtained from experiments, we found that PINNs could be an accurate output solution of SWE when its results were compared with the analytical method. In addition, PINNs also present better performance over the Artificial Neural Network. This study highlights the transformative potential of PINNs in revolutionizing water resources research, offering a new paradigm for accurate and efficient solutions to the SVE.

The Improvement Measures for the Establishment of Emergency Management System in Private Security (위험사회의 전개에 따른 민간경비 산업의 대응과제 - 위기관리를 중심으로)

  • Park, Dong-Kyun
    • Korean Security Journal
    • /
    • no.10
    • /
    • pp.103-125
    • /
    • 2005
  • Hazard are defined here as threat to life, well-being, material goods and environmental from the extremes of natural processes or technology. The challenges of natural and technology in increasing the exposure of people and property to risk pose a dilemma for any government seeking the fullest protection for its people and their property. As society progresses and as technology improves and becomes ever more intricate and far reaching, the human species is confronted with increasingly diverse and numerous catastrophic events. Not so infrequently, unfortunately, the impact of either a man-made or natural disaster is compounded by the fact that policy makers have neither prepared themselves or the public to respond appropriately to a disaster once the tragedy has struck. Many concerns have been raised for importance of emergency management after 1990's numerous urban disasters in Korea. Emergency management is the discipline and profession of applying science, technology, planning, and management to deal with extreme events that can injure or kill large numbers of people, cause extensive damage to property, and disrupt community life. When the primary function of private security is to protect lives and property of clients, emergency management should be included in the security service and many countermeasures should be carried out for that purpose. The purpose of this study is to establish ways and means needed to improve the private security emergency management system in Korea. This study is spilt into four chapters. Chapter I is the introduction part. Chapter II introduces the reader to a private security and emergency management theory, and Chapter III deals with the establishment of an effective emergency management system in Korea private security, Chapter IV is a conclusion. Policy makers and private security industry employers in Korea has not concerned with the importance of training and education by lack of recognition and has been passive about qualified guards. And the authorities supervising and the administrating the guards has not recognized the importance of private security and has neglected the training of the guards. In theses contexts, private security should develop and maintain a educational program of emergency management to meet their responsibilities to provide the protection and safety of the clients. Today's modern corporate security director, is, first of all, a competent, well-rounded business executive and, second, a 'service expert'. And, emergency management personnel in private security industry need continuous training.

  • PDF

Development Plan of R.O.K. Naval forces to prepare Tasks in the Arctic Ocean: Based on Operational Environment(SWOT) Analysis (한국 해군의 북극해 진출과 발전방안에 대한 고찰: 작전환경(SWOT) 분석을 중심으로)

  • Ji, Young
    • Maritime Security
    • /
    • v.1 no.1
    • /
    • pp.311-343
    • /
    • 2020
  • Because of the global warming, the Arctic Ocean is expected to be ice-free by the year 2035. When the Arctic Ocean will be opened, a number of national interests will become more salient as experiencing a shortened sailing distance and decreasing navigation expense, possibility of natural resources transport by sea from Arctic Circle, and indirect-profit making by building a herb port in Asia. To secure the national interests and support the free activities of people in this region, R.O.K government is trying to make advanced policies. In order to carry out the naval tasks in the Arctic Ocean, using the operational characteristics(mobility, flexibility, sustainability, presence of capabilities, projection) is necessary. To this end, ROK Navy should analyze the operational environment (O.E.) by its capability(weakness and strength), opportunity, and threat. R.O.K. Navy should make an effort over the following issues to implement the tasks in the Arctic Ocean: first, Navy needs to map out her own plan (Roadmap) under the direction of government policies and makes crews participate in the education·training programs in home and abroad for future polar experts. Third, to develop the forces and materials for the tasks in cold, far operations area, Navy should use domestic well-experienced shipbuilding skills and techniques of the fourth industrial revolution. Next, improving the combined operations capabilities and military trust with other countries in the Arctic region to cover the large area with lack of forces' number and to resolve the ports of call issues. Lastly, preparation in advance to execute a variety of missions against military and non-traditional threats such as epidemics, HA/DR, SOLAS, in the future operation area is required.

  • PDF

Study on Stagnation Factors Analysis and Improvement Methods through an Evacuation Experiment (피난실험을 통한 피난시간 지연요인 분석과 개선방안에 관한 연구)

  • Han, Woon-Hee
    • Fire Science and Engineering
    • /
    • v.32 no.2
    • /
    • pp.57-66
    • /
    • 2018
  • The most urgent requirement in the event of disaster and fire in a skyscraper is to establish a system that enables people inside to evacuate safely. Hence, a practical direction needs to give evacuees confidence in the evacuation by reducing the psychological anxiety caused by the relatively large number of people inside and at the same time, the physically prolonged evacuation travel line. Evacuation tests with large numbers of people were conducted three times to solve these challenges and identify phenomena and issues that occurred during the experiment. The results revealed the factors that could cause a delay in evacuation and suggested improvements. The study results of this paper are as follows. First, a recent fire at a multipurpose high-rise resulted in a number of casualties due to a lack of experience with the disaster prevention system. To prevent such cases from occurring in advance, adaptability was achieved by conducting evacuation tests. Second, the data collected in the evacuation simulation statistics and the actual escape drills were compared and analyzed. Third, in the evacuation experiment, a large number of people could not participate in the experiment. The reasons for not participating were analyzed and their impact on the actual evacuation time was confirmed. Fourth, equipment aids were purchased to establish the optimal response measure to the causes of a delay in escape time and the standards for ensuring the safety of the evacuee were specified by developing improvements to minimize the evacuation delay time through comparative before and after analysis of the experiment. These results can be used for fire safety control of skyscrapers to improve the efficiency of evacuation.