• 제목/요약/키워드: 사이드 채널형

검색결과 10건 처리시간 0.019초

사이드채널형 연료펌프의 성능예측 (Performance Prediction of Side Channel Type Fuel Pump)

  • 최영석;이경용;강신형
    • 한국유체기계학회 논문집
    • /
    • 제6권2호
    • /
    • pp.29-33
    • /
    • 2003
  • The periphery pump (or regenerative pump) has been generally applied in the automotive fuel pump due to their low specific speed (high heads and small flow rate) with stable performance curves. In this study, the performance prediction of side channel type periphery pumps has been developed. The prediction of the circulatory flow rate is based on the consideration of the centrifugal force field in the side-channel and in the impeller vane grooves. For the determination of performance curve (head-flow rate), momentum exchange theory is used. The effects of various geometric parameters and loss coefficients used in the performance prediction method on the head and efficiency are discussed, and the results were compared with experimental data.

사이드채널형 연료펌프의 성능예측 (Performance Prediction of Side Channel Type Fuel Pump)

  • 최영석;이경용;강신형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.581-584
    • /
    • 2002
  • The periphery pump(or regenerative pump) has been generally applied in the automotive fuel pump due to their low specific speed(high heads and small flow rate) with stable performance curves. In this study, the performance prediction of side channel type periphery pumps has been developed. The prediction of the circulatory flow rate is based on the consideration of the centrifugal force field in the side-channel and in the impeller vane grooves. For the determination of performance curve(head-flow rate), momentum exchange theory is used. The effects of various geometric parameters and loss coefficients used in the performance prediction method on the head and efficiency are discussed and the results were compared with experimental data.

  • PDF

사이드 채널형 링블로워의 임펠러 내부 유로에 따른 성능변화 분석 (Analysis of Performance Characteristics by Inner Flow Path of Side Channel Type Ring Blower)

  • 이경용;최영석;정경호;박운진
    • 한국유체기계학회 논문집
    • /
    • 제15권4호
    • /
    • pp.67-71
    • /
    • 2012
  • This study analyzed performance changes by an inner flow path of impeller groove for side channel type ring blower using CFD. Two models have the same side channel and clearance while one has an inner flow path and the other doesn't. To analyze the performance change of a ring blower, overall performance and local flow field were analyzed. For the overall performance, pressure increase and impeller torque were checked under the design flow condition. Under the design flow condition, pressure increase was greater for the model with the inner flow path. The model with the inner flow path showed improved efficiency because the area subject to torque decreased due to the creation of inner flow path. To analyze local flow field, a section was created from the representative location of each impeller groove toward the direction of radius. Inner channel pressure distribution depending on the rotation direction shows that the model with the inner flow path has pressure equilibrium of working fluid through the inner flow path. Velocity distribution of inside impeller groove shows that flow field was coupled and appeared to form an inner wall where the flow field was stabilized.

사이드채널형 재생블로워의 성능평가 (Performance Evaluation of Side Channel Type Regenerative Blower)

  • 이경용;최영석
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.378-383
    • /
    • 2005
  • The performances of side channel type regenerative blowers were evaluated by the blower performance test, 1-D performance prediction and CFD. The performance prediction method was modified using the results of the performance test and CFD and applied to the design of the new regenerative blowers. The major geometric parameters such as channel height, channel area and expansion angle were decided from the performance prediction method for the improved models and the predicted results were compared with CFD and experimental data. Both of the modified models showed improved efficiency at the operating condition. Especially, model3 could be possible to reduce operating rotating speed, that is benefit to noise performance, because of the high head performance at the design point. The CFD results showed that the performance of the regenerative blower was influenced by the secondary circulatory flow in the channel.

  • PDF

재생형 연료펌프의 채널 면적 변화가 성능 특성에 미치는 영향에 대한 수치해석적 연구 (Numerical Study of Channel Area Effects on the Performance Characteristics of Regenerative Type Fuel Pump)

  • 이경용;최영석;손광은
    • 한국유체기계학회 논문집
    • /
    • 제10권5호
    • /
    • pp.41-45
    • /
    • 2007
  • The effects of channel area on the performance of regenerative type fuel pump were numerically studied by commercial CFD code (ANSYS CFX-10). To examine the effects of channel area, the shapes of the side channel and blade were simplified. The channel area affected the flow characteristics of the internal recirculation flow between the side channel and the blade groove and also made a difference in the overall performance. These loss mechanism with circulation flow were adopted as a loss coefficient in the performance prediction program. The loss coefficient was newly derived from the results of calculations with different channel area, and compared with the experimental results in the reference paper and used to modify the performance prediction program. The circulation flow characteristics with different channel area, which is related with loss mechanism, were also discussed with the results of 3-dimensional flow calculations.

사이드 채널형 재생블로워의 내부 유동 가시화 (Visualization of Flow inside the Side Channel Type Regenerative Blower)

  • 양현모;이경용;최영석;정경석
    • 한국유체기계학회 논문집
    • /
    • 제16권5호
    • /
    • pp.24-28
    • /
    • 2013
  • Visualization of internal flow of a regenerative blower has been made by injecting a tracer directly into the flow. For the convenience of visualization, working fluid has been replaced by water and marbling color oil has been used as a tracer. Oil droplet has been injected near the inlet of the blower and the streak has been recorded using a high speed camera with the illumination of high power light sources. At first, droplets have irregular motion in the near inlet area and enter into a groove of the impeller. Then the droplets circulate inside the groove while translated by the rotational motion of the impeller. When the droplets get out of the impeller groove, their speed is lower than that of impeller. And the droplets repeatedly enter into the groove and circulate inside the grooves. Then the droplets either flow to the outlet or reenter into the inlet area through stripper. Through this experimental study, internally circulating motion of the flow inside a regenerative blower has been characterized.

고압 이단 링블로워의 삼차원 유동해석 및 성능평가 (FLOW ANALYSIS AND PERFORMANCE EVALUATION OF HIGH PRESSURE DOUBLE STAGE RING BLOWER)

  • 이기돈;김광용
    • 한국전산유체공학회지
    • /
    • 제12권4호
    • /
    • pp.85-89
    • /
    • 2007
  • In the present work, flow analysis has been performed for side channel type double stage ring blower by solving three-dimensional Reynolds-averaged Navier-Stokes equation. Shear stress transport model is used as turbulent closure. The commercial CFD code CFX 11.0 is used for the calculations. Each of two stage is calculated separately and the second stage inlet flow is same as the first stage outlet flow so that consecutive calculation is possible. Velocity and pressure fields have been analyzed at the mid-plane between blades. The numerical results are validated with experimental data for head coefficients at different flow coefficients.

사이드채널형 재생펌프의 성능 특성에 관한 실험적 연구 (Performance Characteristics of Side Channel Type Regenerative Pumps)

  • 강신형;임형수
    • 대한기계학회논문집B
    • /
    • 제29권3호
    • /
    • pp.306-313
    • /
    • 2005
  • The performance of a regenerative pump is affected by many parameters, especially blade shape of impeller, leakage flow in the clearance and head losses at the inlet & outlet. An impeller with J-shape blade was designed and 5 times scale up model was tested at similarity conditions to evaluate the performance. Performance variations with clearance change were executed. The amounts of leakage flow through the clearance were estimated using the one-dimensional leakage flow models and analysis. Main leakage flow is generated through the gap between the impeller and casing. The inlet & outlet head losses were also estimated. Such corrections are very important to evaluate the final performance of the impeller and pump. Cavitation test was also performed at 1,200 rpm. NPSH of the regenerative pump was obtained and growth of cavity within blades was visualized.

밴드패스 광 필터를 이용한 VLC 채널의 고휘도 RGB LED 잡음 제거 모델에 관한 연구 (A Study on Noise Cancellation Model in VLC Channel caused by High Luminance of RGB LED, Using Band-Pass Optical Filters)

  • 사이드 누그마노브;티무르 후다이베르게놉;차재상
    • 한국ITS학회 논문지
    • /
    • 제18권1호
    • /
    • pp.83-90
    • /
    • 2019
  • LED조명의 강점을 토대로 LED조명이 보급되고 있으며, 다양한 정부정책이 시행되고 있다. 조명을 활용한 무선통신 기술인 VLC 연구가 활발히 이루어지고 있으며, 많은 연구를 통해서 고속 데이터 전송기와 같은 일반적인 LED 광원을 사용할 수 있다는 것이 증명되었다. 그러나 여전히 주요 문제 중 하나로 라디오 방송의 잡음과 유사한 빛의 간섭문제가 있다. 이에 본 논문에서는 스펙트럼 분리형 VLC 채널을 위한 광 필터를 사용하여 주변 조명의 간섭을 제거하기 위한 모델을 제안하였다. 제안한 모델의 검증을 위하여 다양한 고휘도 RGB LED 모듈을 활용하여 비교분석을 진행하였으며, 추가로 실생활에 적용되어 활용 중인 고휘도 LED 조명을 활용한 실험을 통한 적용성을 검증하였다.

응용 맞춤형 그래픽 분할 실행 라이브러리에 기반한 효율적인 온라인 소프트웨어 서비스 (An Efficient On-line Software Service based on Application Customized Graphic Offloading Library)

  • 최원혁;김원영
    • 인터넷정보학회논문지
    • /
    • 제16권5호
    • /
    • pp.49-57
    • /
    • 2015
  • 본 논문에서는 응용 맞춤형 그래픽 분할 실행 라이브러리에 기반한 효율적인 온라인 소프트웨어 서비스에 대하여 소개한다. 그래픽 분할 실행을 이용한 소프트웨어 서비스는 클라이언트 렌더링을 통하여 3D 그래픽 소프트웨어와 같은 고사양의 소프트웨어를 서버 기반의 온라인 소프트웨어 서비스로 제공할 수 있다. 그래픽 분할 실행은 서버에서 소프트웨어가 실행될 때, 그래픽 관련된 작업은 클라이언트의 GPU를 이용하여 처리하고, 데이터 관련 작업은 서버의 CPU를 이용하여 처리하는 방식이다. 그래픽 분할 실행 소프트웨어 서비스의 성능을 향상시키기 위하여, 비동기 전송 채널을 추가하고, 최적화 된 소프트웨어 공통 모듈과 소프트웨어 맞춤형 모듈을 기존의 그래픽 분할 실행 엔진에 추가한다. 이를 위하여, 본 논문에서는 그래픽 관련 API와 메시지들을 분석하여 소프트웨어 맞춤형 모듈을 구현하고, 서버 사이드 캐싱 방법을 통하여 최적화된 소프트웨어 공통 모듈을 구현하는 방법에 대하여 기술한다. 마지막으로, 성능 비교 실험을 통하여 개선된 분할 실행 엔진이 더 나은 성능을 가짐을 보여준다.