• Title/Summary/Keyword: 사운드 이벤트 분류

Search Result 7, Processing Time 0.016 seconds

Polyphonic sound event detection using multi-channel audio features and gated recurrent neural networks (다채널 오디오 특징값 및 게이트형 순환 신경망을 사용한 다성 사운드 이벤트 검출)

  • Ko, Sang-Sun;Cho, Hye-Seung;Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.4
    • /
    • pp.267-272
    • /
    • 2017
  • In this paper, we propose an effective method of applying multichannel-audio feature values to GRNNs (Gated Recurrent Neural Networks) in polyphonic sound event detection. Real life sounds are often overlapped with each other, so that it is difficult to distinguish them by using a mono-channel audio features. In the proposed method, we tried to improve the performance of polyphonic sound event detection by using multi-channel audio features. In addition, we also tried to improve the performance of polyphonic sound event detection by applying a gated recurrent neural network which is simpler than LSTM (Long Short Term Memory), which shows the highest performance among the current recurrent neural networks. The experimental results show that the proposed method achieves better sound event detection performance than other existing methods.

Development of Sound Event Detection for Home with Limited Computation Power (제한된 계산량으로 가정내 음향 상황을 검출하는 사운드 이벤트 검출 시스템 개발)

  • Jang, Dalwon;Lee, Jaewon;Lee, JongSeol
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.06a
    • /
    • pp.257-258
    • /
    • 2019
  • 이 논문에서는 가정내 음향 상황에 대한 사운드 이벤트 검출을 수행하는 시스템을 개발하는 내용을 담고 있다. 사운드 이벤트 검출 시스템은 마이크로폰 입력에 대해서 입력신호로부터 특징을 추출하고, 특징으로부터 이벤트가 있었는지 아닌지를 분류하는 형태를 가지고 있다. 본 연구에서는 독립형 디바이스가 가정내 위치한 상황을 가정하여 개발을 진행하였다. 가정내에서 일어날 수 있는 음향 상황을 가정하고 데이터셋 녹음을 진행하였다. 데이터셋을 기반으로 특징과 분류기를 개발하였으며, 적은 계산량으로 결과를 출력해야 하는 독립형 디바이스에 활용하기 위해서 특징셋을 간소화하는 과정을 거쳤다. 개발결과는 가정의 거실환경에서 녹음된 소리를 스피커로 출력하여 테스트하였으며, 다양한 음향 상황에 대한 개발이 추가적으로 필요하다.

  • PDF

Sound event classification using deep neural network based transfer learning (깊은 신경망 기반의 전이학습을 이용한 사운드 이벤트 분류)

  • Lim, Hyungjun;Kim, Myung Jong;Kim, Hoirin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.2
    • /
    • pp.143-148
    • /
    • 2016
  • Deep neural network that effectively capture the characteristics of data has been widely used in various applications. However, the amount of sound database is often insufficient for learning the deep neural network properly, so resulting in overfitting problems. In this paper, we propose a transfer learning framework that can effectively train the deep neural network even with insufficient sound event data by employing rich speech or music data. A series of experimental results verify that proposed method performs significantly better than the baseline deep neural network that was trained only with small sound event data.

Sound event detection based on multi-channel multi-scale neural networks for home monitoring system used by the hard-of-hearing (청각 장애인용 홈 모니터링 시스템을 위한 다채널 다중 스케일 신경망 기반의 사운드 이벤트 검출)

  • Lee, Gi Yong;Kim, Hyoung-Gook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.600-605
    • /
    • 2020
  • In this paper, we propose a sound event detection method using a multi-channel multi-scale neural networks for sound sensing home monitoring for the hearing impaired. In the proposed system, two channels with high signal quality are selected from several wireless microphone sensors in home. The three features (time difference of arrival, pitch range, and outputs obtained by applying multi-scale convolutional neural network to log mel spectrogram) extracted from the sensor signals are applied to a classifier based on a bidirectional gated recurrent neural network to further improve the performance of sound event detection. The detected sound event result is converted into text along with the sensor position of the selected channel and provided to the hearing impaired. The experimental results show that the sound event detection method of the proposed system is superior to the existing method and can effectively deliver sound information to the hearing impaired.

Irregular Sound Detection using the K-means Algorithm (K-means 알고리듬을 이용한 비정상 사운드 검출)

  • Lee Jae-yeal;Cho Sang-jin;Chong Ui-pil
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.341-344
    • /
    • 2004
  • 발전소에서 운전 중인 발전 설비의 장비 및 기계의 동작, 감시, 진단은 매우 중요한 일이다. 발전소의 이상 감지를 위해 상태 모니터링이 사용되며, 이상이 발생되었을 때 고장의 원인을 분석하고 적절한 조치를 계획하기 위한 이상 진단 과정을 따르게 된다. 본 논문에서는 산업 현장에서 기기들의 운전시에 발생하는 기기 발생 음을 획득하여 정상/비정상을 판정하기 위한 알고리듬에 대하여 연구하였다. 사운드 감시(Sound Monitoring) 기술은 관측된 신호를 acoustic event로 분류하는 것과 분류된 이벤트를 정상 또는 비정상으로 구분하는 두 가지 과정으로 진행할 수 있다. 기존의 기술들은 주파수 분석과 패턴 인식의 방법으로 간단하게 적용되어 왔으며, 본 논문에서는 K-means clustering 알고리듬을 이용하여 사운드를 acoustic event로 분류하고 분류된 사운드를 정상 또는 비정상으로 구분하는 알고리듬을 개발하였다.

  • PDF

Soccer Video Highlight Summarization for Intelligent PVR (지능형 PVR을 위한 축구 동영상 하이라이트 요약)

  • Kim, Hyoung-Gook;Shin, Dong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.209-212
    • /
    • 2009
  • 본 논문에서는 MDCT기반의 오디오 특징과 영상 특징을 이용하여 축구 동영상의 하이라이트를 효과적으로 요약하는 방식을 제안한다. 제안하는 방식에서는 입력되는 축구 동영상을 비디오 신호와 오디오 신호로 분리한 후에, 분리된 연속적인 오디오 신호를 압축영역의 MDCT계수를 통해 이벤트 사운드별로 분류하여 오디오 이벤트 후보구간을 추출한다. 입력된 비디오 신호에서는 장면 전환점을 추출하고 추출된 장면 전환점으로부터 페널티 영역을 검출한다. 검출된 오디오 이벤트 후보구간과 검출된 페널티 영역장면을 함께 결합하여 축구 동영상의 이벤트 장면을 검출한다. 검출된 페널티 영역 장면을 통해 검출된 이벤트 구간을 다른 이벤트 구간보다 더 높은 우선순위를 갖는 하이라이트로 선정하여 요약본이 생성된다. 생성된 하이라이트 요약본의 평가는 precision과 recall을 통해 정확도를 평가하였다.

  • PDF

Event Detection and Summarization of TV Golf Broadcasting Program using Analyzed Multi-modal Information (멀티 모달 정보 분석을 이용한 TV 골프 방송 프로그램에서의 이벤트 검출 및 요약)

  • Nam, Sang-Soon;Kim, Hyoung-Gook
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.173-176
    • /
    • 2009
  • 본 논문에서는 영상 정보와 오디오 정보 분석을 이용하여 TV 골프 방송 프로그램에서 중요 이벤트 구간을 검출하고 요약 하는 알고리즘을 제안한다. 제안하는 알고리즘에서는 입력되는 TV 골프 동영상을 영상 신호와 오디오 신호로 분리한 후에, 연속적인 오디오 스트림을 내용 기반의 오디오 구간으로 분류한 뒤 오디오 이벤트 구간을 검출하고, 이와 병렬적으로 영상정보에서 선수들의 플레이 장면을 검출한다. 플레이 장면 검출에 있어서는 방송 환경이나 날씨 등의 변화하는 다양한 조건에 대해 플레이 장면에 대한 오프라인 모델과 함께 경기 내에서 발생한 온라인 모델에 대한 학습을 혼합 적용함으로써 검출 성능을 높였다. 오디오 신호로부터 관중들의 박수소리와 스윙 사운드를 통해 검출된 오디오 이벤트와 플레이 장면은 이벤트 장면 검출 및 요약본 생성을 위해 사용된다. 제안된 알고리즘은 멀티 모달 정보를 이용하여 이벤트 구간 검출을 수행함으로써 중요 이벤트 구간 검출의 정확도를 높일 수 있었고, 검출된 이벤트 구간에 대한 요약본 생성을 통해 골프 경기를 시청하는 사용자가 원하는 부분을 빠르게 브라우징하여 시청하는 것이 가능하여 높은 사용자 만족도를 얻을 수 있었다.

  • PDF