• Title/Summary/Keyword: 사운드 신호에너지

Search Result 8, Processing Time 0.021 seconds

Assessment of Compressive Strength of Granitic Gneiss Using Nondestructive Testing based on Sound Energy (사운드에너지 기반 화강편마암의 비파괴 압축강도 산정)

  • Son, Moorak;Kim, Moojun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.8
    • /
    • pp.5-10
    • /
    • 2018
  • This study provides a method to assess the compressive strength of granitic gneiss using total sound signal energy, which is calculated from the signal of sound pressure measured when an object impacts on rock surface, and its results. For this purpose, many test specimens of granitic gneiss were prepared. Each specimen was impacted using a devised device (impacting a specimen by an initial rotating free falling and following repetitive rebound actions) and all sound pressures were measured as a signal over time. The sound signal was accumulated over time (called total sound signal energy) for each specimen of granitic gneiss and it was compared with the directly measured compressive strength of the specimen. The comparison showed that the total sound signal energy was directly proportional to the measured compressive strength, and with this result the compressive strength of granitic gneiss can be reliably assessed by an estimation equation of total sound signal energy. Furthermore, from the study results it is clearly believed that the compressive strength of other rocks and concrete can be assessed nondestructively using the total sound signal energy.

Nondestructive Assessment of Compressive Strength of Construction Materials Using Impact-Echo Response Signal (임팩에코 응답신호를 적용한 건설재료 비파괴 압축강도 산정)

  • Son, Moorak;Kim, Moojun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.8
    • /
    • pp.17-21
    • /
    • 2017
  • This paper is to grasp the use of impact-echo response signal induced from impacting an object for the assessment of compressive strength of construction materials nondestructively and to propose the test results. For this study, an impact device was devised and used for impacting an object by an initial rotating free falling impact and following repetitive impacts from the rebound action which eventually disappears. Concrete test specimens which had been mixed for different strengths were tested and the impact echo response signal was measured for each test specimen. The total sound signal energy which is assessed from integrating the impact-echo response signal was compared with the directly measured compressive strength for each specimen. The comparison showed that the total sound signal energy has a direct relationship with the directly measured compressive strength and the results clearly indicated that the compressive strength of construction materials can be assessed nondestructively using total sound signal energy which is assessed from integrating the impact-echo response signal induced from impacting an object.

Design of a Sound Classification System for Context-Aware Mobile Computing (상황 인식 모바일 컴퓨팅을 위한 사운드 분류 시스템 설계)

  • Kim, Joo-Hee;Lee, Seok-Jun;Kim, In-Cheol
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.1305-1308
    • /
    • 2013
  • 본 논문에서는 스마트폰 사용자의 실시간 상황 인식을 위한 효과적인 사운드 분류 시스템을 제안한다. 이 시스템에서는 PCM 형태의 사운드 입력 데이터에 대한 전처리를 통해 고요한 사운드와 화이트 노이즈를 학습 및 분류 단계 이전에 미리 여과함으로써, 계산 자원의 불필요한 소모를 막을 수 있다. 또한 에너지 레벨이 낮아 신호의 패턴을 파악하기 어려운 사운드 데이터는 증폭함으로써, 이들에 대한 분류 성능을 향상시킬 수 있다. 또, 제안하는 사운드 분류 시스템에서는 HMM 분류 모델의 효율적인 학습과 적용을 위해 k-평균 군집화를 이용하여 특징 벡터들에 대한 차원 축소와 이산화를 수행하고, 그 결과를 모아 일정한 길이의 시계열 데이터를 구성하였다. 대학 연구동내 다양한 일상생활 상황들에서 수집한 8가지 유형의 사운드 데이터 집합을 이용하여 성능 분석 실험을 수행하였고, 이를 통해 본 논문에서 제안하는 사운드 분류 시스템의 높은 성능을 확인할 수 있었다.

Estimates of Surface Explosion Energy Based on the Transmission Loss Correction for Infrasound Observations in Regional Distances (인프라사운드 대기 전파 투과손실 보정을 통한 원거리 지표폭발 에너지 추정)

  • Che, Il-Young;Kim, Inho
    • Journal of the Korean earth science society
    • /
    • v.41 no.5
    • /
    • pp.478-489
    • /
    • 2020
  • This study presents an analysis of infrasonic signals from two accidental explosions in Gwangyang city, Jeonnam Province, Korea, on December 24, 2019, recorded at 12 infrasound stations located 151-435 km away. Infrasound propagation refracted at an altitude of ~40 km owing to higher stratospheric wind in the NNW direction, resulting in favorable detection at stations in that direction. However, tropospheric phases were observed at stations located in the NE and E directions from the explosion site because of the strong west wind jet formed at ~10 km. The transmission losses on the propagation path were calculated using the effective sound velocity structure and parabolic equation modeling. Based on the losses, the observed signal amplitudes were corrected, and overpressures were estimated at the reference distance. From the overpressures, the source energy was evaluated through the overpressure-explosive charge relationship. The two explosions were found to have energies equivalent to 14 and 65 kg TNT, respectively. At the first explosion, a flying fragment forced by an explosive shock wave was observed in the air. The energy causing the flying fragment was estimated to be equivalent to 49 kg or less of TNT, obtained from the relationship between the fragment motion and overpressure. Our infrasound propagation modeling is available to constrain the source energy for remote explosions. To enhance the confidence in energy estimations, further studies are required to reflect the uncertainty of the atmospheric structure models on the estimations and to verify the relationships by various ground truth explosions.

State-of-the-art Studies on Infrasound Monitoring in Korea (국내 인프라사운드 관측기술의 최신 연구 동향)

  • Che, Il-Young;Lee, Hee-Il;Jeon, Jeong-Soo;Shin, In-Cheul;Chi, Heon-Cheol
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.286-294
    • /
    • 2010
  • Korea Institute of Geoscience and Mineral Resources (KIGAM) has installed and operated seven seismoacoustic (infrasound) arrays as well as seismic stations in Korea. The seismo-acoustic array, which consists of co-located seismometers and micro-barometers, can observe both seismic and infrasonic signals from distant explosive phenomena. The infrasound is defined as low frequency (<20 Hz) acoustic waves in atmosphere. In particular, it can be detectable at long distance due to its low energy attenuation during propagation in atmosphere. KIGAM adopted the infrasound technology to discriminate surface explosions from earthquakes only because the surface explosion generally generates infrasound following seismic signal. In addition to surface explosions, these arrays have detected diverse geophysically natural and artificial phenomena, such as infrasound signal from the North Korean nuclear test. This review introduced the state-of-the-art studies and examples of infrasonic signals in and around the Korean Peninsula. In conclusion, infrasound technology would be clearly accepted itself as a new Earth monitoring technology by expanding its detectable regime to lithosphere-Earth surface-atmosphere. In future, an advanced technology, which allows to analyze seismic and infrasonic wave fields together, will enlarge the understanding of geophysical phenomena and be used as a robust analysis method for remote explosive phenomena in the broad infrasound regime.

A Study on the Fevelopment of Teal Time Speech Detection in PC (PC를 이용한 실시간 음성검출 알고리즘에 관한 연구)

  • Chung, Hoon;Chung, Kwon;Chung, Ik-joo
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06c
    • /
    • pp.129-132
    • /
    • 1994
  • 본 논문에서는 윈도우즈용 음성인식 software "voice access"를 개발하여 연구한 실시간 음성검출 알고리즘에 관해 소개한다. 이 음성검출 알고리즘은 200 sample 단위의 프레임 에너지, 프레임 영교차율, 음성의 길이를 음성검출의 파라메타로 사용한다. 각 파라메타의 문턱값은 신호의 평균값, 잡음의 표준편차, 미디안 표준편차와 한국어의 음성적 특성을 고려하여 설정하였으며 주변의 환경에 적응해 가며 문턱값을 조정하므로 주변 잡음환경의 변화에 대해서도 강인한 음성검출 결과를 보여준다. 또한 실시간으로 음성을 검출하므로 실용성이 높다. 음성의 검출은 일반사운드 카드를 통해 16-bit의 8KHz로 샘플링된 신호를 사용한다. 음성검출을 위한 분석은 200 sample 씩 하고 100 sample 씩 overlap 하면서 수행한다. 음성검출을 위한 모든 분석은 특별한 DSP의 도움없이 486D 이상에서 실시간으로 구현했다.시간으로 구현했다.

  • PDF

A Study of the Seocheon Fireball Explosion on September 23, 2020 (2020년 9월 23일 서천 화구 폭발 관측 연구)

  • Che, Il-Young;Kim, Inho
    • Journal of the Korean earth science society
    • /
    • v.42 no.6
    • /
    • pp.688-699
    • /
    • 2021
  • On September 23, 2020, at 1:39 a.m., a bright fireball above Seocheon was observed across the country. Two fireball explosions were identified in the images of the All-Sky Camera (ASC), and the shock waves were recorded at seismic and infrasound stations in the southwestern Korean Peninsula. The location of the explosion was estimated by a Bayesian-based location method using the arrival times of the fireball-associated seismic and infrasound signals at 17 stations. Realistic azimuth- and rang-dependent propagation speeds of sound waves were incorporated into the location method to increase the reliability of the results. The location of the sound source was found to be 36.050°N, 126.855°E at an altitude of 35 km, which was close to the location of the second fireball explosion. The two explosions were identified as sequential infrasound arrivals at local infrasound stations. Simulations of waveforms for long ranges explain the detection results at distant infrasound stations, up to ~266 km from the sound source. The dominant period of the signals recorded at five infrasound stations is about 0.4 s. A period-energy relation suggests the explosion energy was equivalent to ~0.3 ton of TNT.

Intelligibility Enhancement of Multimedia Contents Using Spectral Shaping (스펙트럼 성형기법을 이용한 멀티미디어 콘텐츠의 명료도 향상)

  • Ji, Youna;Park, Young-cheol;Hwang, Young-su
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.11
    • /
    • pp.82-88
    • /
    • 2016
  • In this paper, we propose an intelligibility enhancement algorithm for multimedia contents using spectral shaping. The dialogue signals is essential to understand the plot of audio-visual media contents such as movie and TV. However, the non-dialogue components as like sound effects and background music often degrade the dialogue clarity. To overcome this problem, this paper tries to improves the dialogue clarity of audio soundtracks which contain important cues for the visual scenes. In the proposed method, the dialogue components are first detected by soft masker based on speech presence probability (SPP) which is widely used in speech enhancement field. Then, extracted dialogue signals are applied to the spectral shaping method. It reallocate the spectral-temporal energy of speech to enhanced the intelligibility. The total energy is maintained as unchanged via a loudness normalization process to prevent saturation. The algorithm was evaluated using the modeled and real movie soundtracks and it was shown that the proposed algorithm enhances the dialogue clarity while preserving the total audio power.