• Title/Summary/Keyword: 사용후연료

Search Result 548, Processing Time 0.027 seconds

Numerical Simulation of Bullet Impact for Fuel Cell of Rotorcraft (회전익항공기용 연료셀 피탄 수치모사 연구)

  • Kim, Hyun-Gi;Kim, Sung Chan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.5
    • /
    • pp.405-411
    • /
    • 2012
  • Inside a rotorcraft fuel cell, pipes and components are located for fuel storage and fuel supply into the engine. Utility helicopters, operated in battle fields, fly at lower altitude compared to fixed-wing aircraft and hence are more likely to be exposed to gunfire. Since internal pressure of fluid increases when hit, the effect on LRU due to increase in pressure must taken into account when designing the aircraft for survivability. However, it is costly and time consuming to manufacture a fuel cell for gunfire test, and due to constraints from usage of live ammunition, related data gathered through numerical simulation is needed. In this study, numerical simulation on rotorcraft fuel cell exposed to gunfire was carried out using Autodyn to analyze bullet movement inside the fuel cell after hit, and internal pressure of fluid and equivalent stress on fuel cell assessed.

Investigation of PWR Spent Fuels for the Design of a Deep Geological Repository (심층처분시스템 설계를 위한 경수로 사용후핵연료 현황 분석)

  • Cho, Dong-Keun;Kim, Jungwoo;Kim, In-Young;Lee, Jong-Youl
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.3
    • /
    • pp.339-346
    • /
    • 2019
  • Based on the $8^{th}$ Basic Plan for Electric Power Demand and Supply, an estimation has been made for inventories and characteristics of spent fuel (SF) to be generated from existing and planned nuclear power plants. The characteristics under consideration in this study are dimensions, fuel array, $^{235}U$ enrichment, discharge burnup, and cooling time for each fuel assembly. These are essentially needed for designing a disposal facility for SFs. It appears that the anticipated quantity by the end of 2082 is about 62,500 assemblies for PWR SFs. The inventories of Westinghouse-type and Korean-type SFs were revealed to be 60% and 40%, respectively as of the end of 2018. The proportion of SFs with initial $^{235}U$ enrichment below 4.5 weight percent (wt%) was shown to be approximately 90% in total as of the end of 2018. As of 2077, more than 97% of SFs generated from Westinghouse-type nuclear reactors were shown to have cooling time of over 50 years. As of 2125, more than 98% of SFs generated from Korean-type nuclear reactors were shown to have cooling time of over 45 years. Based on these results, for the efficient design of a disposal system, it is reasonable to adopt two types of reference spent fuel. SF of KSFA with $^{235}U$ enrichment of 4.5 wt%, discharge burnup of 55 GWd/tU, and cooling time of 50 years was determined as reference fuel for Westinghouse-type SFs; SF of PLUS7 with $^{235}U$ enrichment of 4.5 wt%, discharge burnup of 55 GWd/tU, and cooling time of 45 years was determined as reference fuel for Korean-type SFs.

Fuelcell GDL used in the high conductance of the carbon fiber surface treatment (연료전지 기체확산층용 고전도성 탄소섬유 표면처리 연구)

  • Baek, Sunghwan;Kim, Taejin;Kim, Jingu;Lee, Yohan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.131.1-131.1
    • /
    • 2010
  • 고분자연료전지(PEMFC)에서 기체확산층(GDL)은 다공성의 카본 종이/천 위에 마이크로한 다공층을 가치는 구조로 촉매층을 지지하고 촉매층과 분리판 사이의 전류전도체 역할을 한다. 또한 촉매층에 연료와 공기 확산 및 생성된 물의 통로 역할을 하며 소수성인 전기전도성 물질로 이루어져 있다. 현재 연료전지에 쓰이는 가스확산층은 대부분 국외 회사에서 제조 수입 사용하는 현황이고 국내에서는 협진 I&C가 연구하고 있으나 상용화는 아직 이루어지지 않고 있다. 본 연구는 탄소섬유의 전도성을 개선하고자 탄소섬유 표면에 금속코팅 시 최적의 접촉계면유지를 위한 표면처리 방법 및 공정을 조사 분석 후 최적 개선방법(농도/온도/압력/시간)을 설정하고자 하였다. 또한 선정된 공정인자별 수준별 시험 후 샘플링 된 시료를 토대로 금속물질이 탄소섬유 표면에 코팅(도금)된 금속-탄소섬유를 대하여 평가하여 최적화시키고자 탄소섬유로부터 carbon paper GDL의 모재를 개발할 계획이다. 앞에서 설명한 바와 같이 탄소섬유를 이용하여 paper making, resin impregnation, molding, carbonization/graphitization의 제조공정을 거쳐 paper형태의 GDL을 생산 및 평가하고자 하였다.

  • PDF