기존의 웹 로그를 이용한 추천 System에서의 추천 문서 집합은 웹 페이지의 연관성과 웹 문서 사이의 거리를 이용하여 사용자들에게 추천 문서 집합을 제공해 주는 방식을 사용하였다. 이 방법에 의하면 추천 폐이지로 제공되는 페이지는 사용자별 연관성이 고려되지 않으므로 모든 사용자들이 웹 페이지의 연관성안을 이용한 폐이지를 추천 받는다. 따라서 처음 웹사이트를 방문한 새로운 사용자들에게는 추천해주는 폐이지는 사용자가 보고 있는 웹 페이지의 연관성에 의한 웹 페이지만을 추천 받게 되므로 생각하지 못했던 폐이지나 비슷한 취향을 가진 사용자들이 방문을 했던 페이지에 대해서는 추천 받지 못한다는 문제점을 가지고 있다. 따라서 본 논문에서는 동일한 폐이지를 방문한 사용자별로 클러스터링 하여 같은 그룹에 속한 사용자들의 브라우징 패턴 정보를 발견, 분석화 하여 DB에 저장하였으며, 새로운 사용자에 대해서 웹 페이지 추천 집합을 제공하였다.
추천 시스템은 사용자들의 과거 구매 이력 등을 학습해서 사용자들이 미래에 구매할 것 같은 상품을 추천한다. 대부분의 추천 시스템 관련 연구들은 사용자들과의 상호작용을 고려하지 않은 채 한 번의 모델 학습과 한 번의 추천만 수행하며, 사용자로부터 추천 결과에 대한 피드백을 받아서 더 나은 추천을 수행하려는 시도는 거의 이루어지지 않았다. 본 논문에서는 기존의 추천 모델들이 사용자와의 상호작용을 추가적으로 고려했을 때 어느 정도의 정확도 향상을 이룰 수 있는지에 대해서 분석한다. 특히 사용자와의 상호작용을 통해 사용자 취향의 다양성을 파악하고 이를 반영하여 더 나은 추천을 제공하는 방법에 대해서 논의한다.
웹 상에 정보가 폭발적으로 증가함에 따라 각 사용자에게 맞는 정보를 선별하여 제공하는 개인화 서비스는 매우 중요한 이슈가 되었다. 기존 추천시스템들은 컨텐츠 기반 필터링과 협업 필터링 기법을 기반으로 한다. 그러나 이러한 방법들은 충분히 수집된 사용자 정보를 필요로 하기 때문에, 적절한 추천이 이루어지기 까지 다소 시간이 소요되는 문제를 가지고 있다. 또한 사용자의 성향이 지나치게 편중되는 경우, 사용자의 취향변화를 반영하여 새로운 상품을 추천하는 것은 어렵다. 실제로 사용자들은 웹 사이트의 방문 목적에 따라 개인화된 상품추천을 원하기도 하고, 많은 사용자들에게 인기 있는 상품을 원하기도 한다. 본 논문에서는 사용자의 행동분석을 기반으로, 협업 필터링을 기반으로 하는 개인화된 추천과 다수의 사용자들에게 공통적으로 인기 있는 상품의 추천 비율을 동적으로 조합하여 최종 추천 상품들을 선별하는 새로운 적응형 추천 시스템을 제안한다. 본 논문에서는 MovieLens의 데이터 셋을 이용하여 기존 추천기법들과 추천결과에 대한 정확도를 비교 실험하였으며, 보다 높은 정확도를 보이는 실험결과를 통해 제안시스템의 유효성을 확인하였다.
전자상거래에서 사용되고 있는 추천시스템은 사용자들의 프로파일과 이들의 정보를 바탕으로 사용자가 선호할 만한 아이템을 추천한다. 추천시스템에서 널리 사용되고 있는 협력적 필터링 방식은 사용자들 사이의 선호도 평가치를 비교하여 유사 사용자를 선택하고, 아이템에 대한 유사 사용자의 선호도 평가치를 기반으로 하여 추천하고자 하는 아이템에 대한 사용자의 선호도를 예측하는 것이다. 하지만 사용자의 선호도가 적은 데이터로 인한 희소성 문제는 추천시스템의 성능을 저해하는 요인으로 작용하고 있다. 이러한 희소성의 문제는 선호도 평가 자료에 나타난 아이템들의 총수에 비하여 사용자가 선호한 아이템의 수가 아주 적기 때문에 발생하며, 새로운 사용자의 경우에는 아이템에 대한 선호도 평가치가 없어 유사 사용자를 선택할 수가 없어 나타나며 심한 경우에는 아이템을 전혀 추천할 수 없게 된다. 이리할 추천 시스템의 희소성문제를 해결차기 위한 방법은 희소성이 높은 데이터들에 대한 희소성을 감소시키는 것이다. 따라서 본 논문에서는 아이템에 대한 희소성을 조사하여 협력적 필터링에서 희소성 아이템이 MAE에 미치는 영향을 분석하였다. 그리고 희소성 문제를 완화하여 예측 정확도를 높이기 위한 방법으로 선호도가 적은 아이템에 대해 희소성을 최소화하는 연구와 이에 따라 희소성과 MAE의 값을 개선하는 방법을 제안한다.
사용자 적응형 추천 시스템의 목적은 사용자의 선호도와 행동 정보 등을 분석, 분류하여 그를 바탕으로 각 사용자가 필요로 하거나 선호 할 만한 서비스를 사용자에게 추천하여 사용자 편리성을 높이는 것이다. 그러나 기존의 추천 시스템은 새로운 사용자의 등장이나 새로운 서비스의 등장 시 분석에 많은 시간을 필요로 하거나, 과특성화와 희귀성이라는 특성으로 인한 추천 서비스 단순화 등의 문제점을 안고 있다. 본 논문에서는 새로운 사용자 등장 시 결정 트리를 이용한 분류로 분석시간을 줄이고, 새로운 아이템의 등장 시 분석시간의 감소와 다양한 사용자 중심적인 추천을 위해 대리자를 이용한 사용자 군집화와 추천을 수행하는 새로운 모델을 제시한다. 또한 제안된 모델을 분석하여 위의 문제점들이 어떻게 해결되는지 설명한다.
기업과 소비자간 일대일 상호작용을 가능하게 하는 전자상거래의 기술적 발달을 통해 소비자에게 더 나은 웹 경험을 제공하기 위해 개인화 서비스를 제공하고 있다. 개인화 추천을 수행하기 위해서는 추천을 받을 사용자와 유사한 다른 사용자들의 선호도를 반영하는 협업 필터링 기법이 많이 활용되고 있으며, 많은 사이트들이 추천을 받은 사용자에게 유사한 사용자들을 보여주어 사회망 연결을 위한 기회를 제공하고 있다. 본 연구에서는 웹 기반 개인화 추천 시스템을 이용하여 사용자에게 효과적으로 제품을 추천하기 위해서, 사회적 실재감(Social Presence)이 추천시스템의 만족도에 미치는 영향에 관하여 연구하고자 한다. 또한, 사회적 실재감을 높이기 위한 방안으로 사회망(Social Network) 데이터의 제시를 통해 다양한 차원의 사회적 실재감과 추천시스템에 대한 만족도 및 신뢰간의 영향관계를 분석한다. 이를 위해 실험집단을 나누어 세 가지 차원의 사회적 실재감을 부여하고, 집단간의 추천 시스템에 대한 신뢰와 만족도간에 차이가 있는지를 분석하였다.
최근 상황인지에 관한 연구가 활발히 진행되고 있으며 스마트폰의 각종 센서를 통해 사용자의 컨텍스트 파악이 가능해졌다. 이에 따라서 스마트폰의 컨텍스트 파악을 통해서 사용자에게 각종 친화적 서비스 모델이 많이 생겨 나고 있다. 사용자의 경로 추론, 실내에서의 사용자의 위치파악, 사용자 위치기반 편의시설 추천 등이 그 예이며, 그 중 애플리케이션 추천은 대표적인 서비스라 할 수 있다. 애플리케이션 추천은 사용자의 컨텍스트에 따라서 애플리케이션 사용내역을 로그 데이터로 만들고, 로그 데이터를 기반으로 컨텍스트에 따라서 사용자의 애플리케이션 추천을 해주는 시스템이다. 여기서 로그 데이터를 가공하지 않고 통계를 통해 추천이 가능하지만, 로그 데이터를 사용하여 의사 결정 트리를 만들게 되면 보다 정확하고, 빠르게 추천이 가능하며 적은 로그 데이터로 더 많은 컨텍스트에 적용하여 추천 할 수 있다는 이점이 있다. 본 논문에서는 사용자의 컨텍스트 추출하고 이 데이터를 기반으로 의사결정트리를 만들어 앱을 추천하는 시스템을 제안한다. 이러한 컨텍스트 수집 방법과 추론모델을 이용한 애플리케이션 추천 시스템은 추후 사용자 친화적 서비스 연구에 많은 도움이 될 것이다.
논문은 공공 데이터 Open API와 사용자의 과거 행동과 주변 상황정보를 토대로 사용자가 선호하는 문화를 맞춤 추천하는 어플리케이션인 '눈치 코칭_문화'의 설계 및 구현에 대하여 서술한다. '눈치 코칭_문화'는 사용자가 쉽게 문화를 추천 받을 수 있도록 만들어진 어플리케이션으로 기존의 필터링 방식으로 사용자가 검색하는 방식의 어플리케이션들과 달리 사용자의 주변 상황과 사용자의 취향 분석을 통해 최적의 문화 Contents를 어플리케이션을 통해 제공한다. 사용자의 별도의 상세검색이나 검색, 좋아요 기능, 주변 위치와 같은 상황 정보를 어플리케이션 사용 로그를 저장 후 데이터 전처리를 하여 사용자에게 다시금 피드백 되는 어플리케이션이다. 지속적인 알림을 통해 사용자에게 문화를 추천하도록 만들었다. 또한, 사용자에게 문화의 날 정보와 사용자 주변 위치의 문화센터를 추천하여 사용자의 문화 활동을 지향한다.
본 논문은 공공 데이터 Open API와 사용자의 과거 행동과 주변 상황정보를 토대로 사용자가 선호하는 문화를 맞춤 추천하는 어플리케이션인 '눈치 코칭_문화'의 설계 및 구현에 대하여 서술한다. '눈치 코칭_문화'는 사용자가 쉽게 문화를 추천 받을 수 있도록 만들어진 어플리케이션으로 기존의 필터링 방식으로 사용자가 검색하는 방식의 어플리케이션들과 달리 사용자의 주변 상황과 사용자의 취향 분석을 통해 최적의 문화 Contents를 어플리케이션을 통해 제공한다. 사용자의 별도의 상세검색이나 검색, 좋아요 기능, 주변 위치와 같은 상황 정보를 어플리케이션 사용 로그를 저장 후 데이터 전처리를 하여 사용자에게 다시금 피드백 되는 어플리케이션이다. 지속적인 알림을 통해 사용자에게 문화를 추천하도록 만들었다. 또한, 사용자에게 문화의 날 정보와 사용자 주변 위치의 문화센터를 추천하여 사용자의 문화 활동을 지향한다.
최근 사용자들의 궤적 분석을 통해 사용자의 성향에 적합한 정보를 추천해주는 연구들이 진행되고 있다. 이러한 연구들은 여행지 추천, 친구 추천 등과 같은 응용 서비스를 위해서 클러스터링 기법과 패턴 매칭 기법을 많이 사용하고 있다. 그러나 클러스터링 기법은 추천 받는 사용자의 선호도가 반영되지 않고, 다른 사용자들의 선호도에 따라 추천을 해주는 단점이 존재한다. 또한, 패턴 매칭 기법은 다른 사용자와의 POI(Point of Interest)의 유형과 거리를 비교하여 추천을 수행하기 때문에 사용자의 세부적인 선호도를 반영할 수 없는 단점이 존재한다. 이러한 기존 연구들을 보완하기 위해 본 논문에서는 POI의 속성 정보와 사용자의 이동 패턴을 고려한 POI을 추천 기법을 제안한다. 제안하는 기법은 크게 사용자의 속성 정보를 이용해서 선호도를 계산하고 선호도가 다른 궤적을 필터링하는 부분과 패턴 매칭 기법을 사용하여 근접한 궤적을 찾는 부분으로 구성된다. 제안하는 기법의 우수성을 입증하기 위해서 추천된 POI 궤적과 사용자 POI 궤적을 비교하여 두 궤적의 이동 패턴이 유사함을 확인하였다.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.