• Title/Summary/Keyword: 사용자 이동 패턴

Search Result 236, Processing Time 0.029 seconds

Moving Pattern Mining Algorithm of Moving Object for Support of Optimal Path Service (최적 경로 서비스 지원을 위한 이동 객체의 이동 패턴 탐사 알고리즘)

  • Ko, Hyun;Kim, Kwang-Jong;Lee, Yon-Sik
    • Annual Conference of KIPS
    • /
    • 2006.11a
    • /
    • pp.413-416
    • /
    • 2006
  • 최근 위치 측위 기술의 발달 및 GPS 기술의 상용화로 인해 무선 통신 기기의 보급이 증가하면서 다양한 위치 기반 서비스 개발을 위한 노력이 활발히 진행되고 있다. 사용자들의 특성에 맞게 개인화되고 세분화된 위치 기반 서비스를 제공하기 위해서는 방대한 이동 객체의 위치 이동 데이터로부터 의미있는 지식인 유용한 패턴을 추출하기 위한 시간 패턴 탐사가 필요하다. 기존의 시간 패턴 탐사 기법들 중 일부는 이동 객체의 시간에 따른 공간 속성들의 변화를 충분히 고려하지 못하거나 또는 시공간 속성을 동시에 고려한 패턴 탐사는 가능하나 전체 이동 패턴들 중 추출하고자 하는 패턴에 반드시 포함되어야 하는 공간 정보에 대한 제약이 없어 특정 지점들 사이의 최적 이동 경로 탐색 문제나 단위기간 동안 이동 객체가 순회해야 지점들에 대한 스케줄링 경로 예측 문제 등에 적용하기 어렵다. 따라서 본 논문에서는 이동 객체의 위치 이력 데이터들에 대한 시공간 속성들을 고려하여 다양한 이동 패턴들 중 객체의 최적 이동 경로에 해당하는 패턴을 탐색하기 위한 새로운 시간 패턴 마이닝 알고리즘을 제안한다. 제안된 알고리즘은 특정한 지점들 사이를 이동한 객체의 위치 데이터들 중 객체가 가장 빈번하게 이동한 경로를 탐색하여 최적 경로를 결정하는 알고리즘으로, 공간 추상 계층의 각 계층별 영역 내 포함여부를 고려한 위치 일반화를 수행하여 보다 효과적으로 이동 패턴을 탐색할 수 있다.

  • PDF

Dynamic Location Update Scheme using Differentiated Moving Pattern in Mobile Cellular Networks (모바일 셀룰러 네트워크에서 차별화 된 사용자 이동 패턴을 이용한 동적인 Location Update 기법)

  • Park, Song-Hwa;Im, Sung-Yeal;Chung, Ki-Dong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07a
    • /
    • pp.478-480
    • /
    • 2005
  • 본 논문에서는 모바일 셀룰러 네트워크상에서 다양한 이동 단말 이동성을 이용한 동적인 Location Update 기법을 제안한다. 동적인 Location Update 기법에서는 다양한 이동 단말들의 이동 패턴을 고려하기 위해서 Differentiated-Walk Model을 이용하고 그 모델에서 제공하는 핸드오프 확률과 이동성 등급을 이용하여 LA(Location Area)를 형성한다. LA는 사용자의 이동 패턴을 고려하여 동적으로 형성되며 본 논문에서는 이러한 LA를 기반으로 제공되는 페이징 기법을 제안한다.

  • PDF

Three-Edge Pattern based Path Prediction Algorithm for Sensor Registry System (센서 레지스트리 시스템을 위한 3-간선 패턴 기반 경로 예측 알고리즘)

  • Lee, Sukhoon;Jeong, Dongwon;Jung, Hyunjun;Baik, Doo-Kwon
    • Annual Conference of KIPS
    • /
    • 2015.04a
    • /
    • pp.798-801
    • /
    • 2015
  • 센서 레지스트리 시스템(SRS, Sensor Registry System)은 이기종 센서 네트워크에서 끊김 없는 의미 처리를 위하여 사용자에게 센서 정보를 제공한다. 불안정한 네트워크 상황에서의 원활한 서비스 제공을 위하여 빠른 근거리 사용자 이동 경로 예측 알고리즘(FCR, Fast and Close-Range Prediction) 기반의 SRS가 연구되었다. 이 연구는 경로 예측 기반의 SRS에서 이용되는 FCR 알고리즘이 지니는 한계를 극복하기 위하여 3-간선 패턴(TEP, Three-Edge Pattern) 기반의 경로 예측 알고리즘을 제안한다. TEP 알고리즘은 경로를 그래프로 표현할 때 사용자의 위치를 기준으로 이전 간선, 현재 간선, 다음 간선으로 패턴화 하여 학습하고, 이 패턴을 기반으로 하는 사용자의 이동 경로를 예측한다. 또한 실험 및 비교 평가에서, TEP 알고리즘이 FCR 알고리즘에 비해 높은 정확성을 지님을 보인다.

Friend Recommendation Scheme Using Moving Patterns of Mobile Users in Social Networks (소셜 네트워크에서 모바일 사용자 이동 패턴을 이용한 친구 추천 기법)

  • Bok, Kyoungsoo;Seo, Kiwon;Lim, Jongtae;Yoo, Jaesoo
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.4
    • /
    • pp.56-64
    • /
    • 2016
  • With the development of information technologies and the wide spread of smart devices, the number of users of social network services has increased exponentially. Studies that identify user preferences and recommend similar users in these social network services have been actively done. In this paper, we propose a new scheme to recommend social network friends with similar preferences through the moving pattern analysis of mobile users. The proposed scheme removes the meaningless trajectories via companions, short time trajectories, and repeated trajectories to determine the correct user preference. The proposed scheme calculates user similarity using the meaningful trajectories and recommends users with similar preferences as friends. It is shown through performance evaluation that the proposed scheme outperforms the existing schemes.

Location Generalization Method for Pattern Mining of Moving Object (이동 객체의 패턴 마이닝을 위한 위치 일반화 방법)

  • Ko, Hyun;Kim, Kwang-Jong;Lee, Yon-Sik
    • Annual Conference of KIPS
    • /
    • 2006.11a
    • /
    • pp.405-408
    • /
    • 2006
  • 사용자들의 특성에 맞게 개인화되고 세분화된 위치 기반 서비스를 제공하기 위해서는 방대한 이동객체의 위치 이력 데이터로부터 유용한 패턴을 추출하기 위한 시간 패턴 탐사가 필요하다. 기존의 시간 패턴 탐사 기법들은 이동 객체의 시간에 따른 공간 속성들의 변화를 충분히 고려하지 못하거나, 시공간 속성을 동시에 고려한 패턴 탐사는 가능하나 제약을 가진 공간 정보를 포함하는 패턴 탐사 문제에는 적용하기 어렵다. 따라서 이동 객체의 위치 이력 데이터들에 대한 시공간적 속성들을 동시에 고려하여 다양한 이동 패턴들 중 공간 제약을 만족하는 패턴들을 추출하기 위한 새로운 이동 패턴 탐사 기법이 요구된다. 이러한 패턴 탐사 기법의 개발을 위해서는 상세 수준의 위치 이력 데이터들을 공간 영역 정보 형태로 변환하는 위치 일반화 접근법이 필요하다. 이에 본 논문에서는 객체의 위치값과 공간 영역간의 위상 관계를 고려하여 이동 객체의 위치 속성에 대한 공간영역으로의 일반화 방법을 제안한다. 이동 객체의 상세 수준의 위치 정보에서는 의미있는 패턴을 찾기가 어렵기 때문에 데이터 전처리 과정을 통해 일반화된 데이터 집합을 형성함으로써 효율적인 이동 객체의 시간 패턴 마이닝을 유도할 수 있다.

  • PDF

Dynamic period of GPS searching using pattern analysis of moving trajectory (사용자 이동 경로 패턴 분석을 통한 동적 GPS 신호 검색 주기 변경 기법)

  • Kwon, Minan;Oh, Jehwan;Lee, Eunseok
    • Annual Conference of KIPS
    • /
    • 2009.11a
    • /
    • pp.897-898
    • /
    • 2009
  • 본 논문은 사용자의 일상적인 이동 경로 패턴을 분석하여 일상화 지수를 측정하고, 이를 통해 GPS 신호 검색 주기를 동적으로 변경하는 동적 GPS 신호 검색 주기 변경 시스템을 제안한다. 고정된 GPS 신호 검색 주기는 불필요하게 많은 전력을 소모하기 때문에 제안 시스템을 이용하여 이동 단말기의 전력 소모 문제를 개선할 수 있다.

Performance Improvement of SDF Terminal Paging Scheme using User Movement History List in Mobile Communication Systems (이동통신 시스템에서 사용자 이동경로를 이용한 SDF 단말기 페이징 기법의 성능향상)

  • 김규칠;김용석
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10e
    • /
    • pp.34-36
    • /
    • 2002
  • 단말기 페이징이란 특정한 이동 단말장치의 정확한 위치를 결정하는 과정을 말한다. 페이징 비용은 단말기를 찾기 위한 페이징 사이클의 수와 검색되는 셀의 수에 비례한다.본 논문에서는 이러한 페이징 비용을 감소시키기 위하여, 실생활에서 단말기 사용자의 이동 패턴이 일정하다는 가정 하에 Shortest-Distance-First 방식에 단말기 사용자의 이동경로 이력 리스트를 부가한 이동경로 기반의 페이징 기법을 제안하고 폴링 사이클의 수와 폴링 시그널의 수 관점에서 시뮬레이션을 통해 기존 SDF 단말기 페이징 기법과 성능을 비교 분석한다. 시뮬레이션 결과를 통하여 제안된 방식이 폴링 사이클과 폴링 시그널의 수를 감소시킴을 보여준다

  • PDF

Documentation of Printed Hangul Images of the Selected Area by Finger Movement (손가락 이동에 의해 선택된 영역의 인쇄체 한글 영상 문서화)

  • 백승복;손영선
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.51-54
    • /
    • 2002
  • 본 논문은 글자 문서를 배경으로 사용자의 손가락 이동에 의하여 일정한 영역을 그린 후, 영역내의 한글영상을 편집 가능한 에디터에 출력하는 시스템을 구현하였다. 영상의 전처리 단계에서는 문서 배경과 손영역을 분리하고 최대 원형 이동법을 이용하여 손의 무게 중심점을 추출한다. 원형 패턴 벡터 알고리즘을 사용하여 손을 인식한 후, 거리 스펙트럼으로 손가락 위치를 찾는다. 손가락의 움직임에 의해 선택되어진 문자 영역을 추출한 후, 한글 자소 간 히스토그램을 이용하여 추출된 문자 이미지 영역에서 문자단위로 분할하고 다양한 크기의 문자를 표준화한다. 퍼지 추론을 적용한 원형 패턴 벡터 알고리즘을 이용하여 표준 패턴문자와 입력문자의 특징벡터를 비교하여 문자를 인식하게 함으로써 사용자가 원하는 영역의 문자들을 수정 가능한 문서로 변환하였다

  • PDF

Design of the web data mining system and definition of useful access patterns (웹 마이닝 시스템 설계 및 유용한 접근 패턴 정의)

  • 김종달;김성민;남도원;이동하;이전영
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.04a
    • /
    • pp.283-291
    • /
    • 2000
  • 인터넷 서비스 제공자들이 관심을 가지고 있는 것 중 하나는 인터넷 사용자들의 서비스 이용 패턴과 경향을 분석하는 것이다. 이를 통해 매출 증대와 실제 경영에 도움이 되는 사용자의 특성을 이해할 수 있기 때문이다. 이와 관련된 기본적인 접근방법은 사용자가 웹 서버에 접근했을 때 서버에 남는 웹 로그를 분석하여 사용자 패턴을 분석하는 것이다. 웹 로그 분석에 전형저인 통계기법이 사용되고 있다. 그러나 단순 통계 기법만으로는 알려지지 않는 데이터들 사이에 숨겨진 유용한 정보를 찾는 데에는 한계가 있다. 최근에는 이러한 한계를 극복하기 위해 데이터 마이닝 기술을 이용한 새로운 접근 방법이 시도되고 있다. 그러나 실제로 웹 로그에서부터 데이터 마이닝 기술을 이용하는 데에는 전처리 과정의 어려움과 실제 유용한 패턴을 어떻게 정의하는 가가 어려운 문제이다. 본 연구에서는 로(raw) 데이터인 웹 로그에서 유용한 패턴을 찾기 위한 전처리 과정을 알아보고, 웹 마이닝 시스템에 적합한 트랜잭션의 데이터 구조를 제시한다. 그리고 정의된 데이터 구조를 통한 패턴 발견 과정인 웹 사이트의 개념계층을 이용한 통계 기법과 연관규칙(Association Rules) 탐사에 대해 알아본다. 마지막으로 정의된 데이터 구조를 통한 새로운 유용한 패턴을 정의한ㄷ.

  • PDF

Design of a MapReduce-Based Mobility Pattern Mining System for Next Place Prediction (다음 장소 예측을 위한 맵리듀스 기반의 이동 패턴 마이닝 시스템 설계)

  • Kim, Jongwhan;Lee, Seokjun;Kim, Incheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.8
    • /
    • pp.321-328
    • /
    • 2014
  • In this paper, we present a MapReduce-based mobility pattern mining system which can predict efficiently the next place of mobile users. It learns the mobility pattern model of each user, represented by Hidden Markov Models(HMM), from a large-scale trajectory dataset, and then predicts the next place for the user to visit by applying the learned models to the current trajectory. Our system consists of two parts: the back-end part, in which the mobility pattern models are learned for individual users, and the front-end part, where the next place for a certain user to visit is predicted based on the mobility pattern models. While the back-end part comprises of three distinct MapReduce modules for POI extraction, trajectory transformation, and mobility pattern model learning, the front-end part has two different modules for candidate route generation and next place prediction. Map and reduce functions of each module in our system were designed to utilize the underlying Hadoop infrastructure enough to maximize the parallel processing. We performed experiments to evaluate the performance of the proposed system by using a large-scale open benchmark dataset, GeoLife, and then could make sure of high performance of our system as results of the experiments.