• Title/Summary/Keyword: 사용자 유사성

Search Result 882, Processing Time 0.025 seconds

Personalized and Social Search by Finding User Similarity based on Social Networks (소셜 네트워크 기반 사용자 유사성 발견을 통한 개인화 및 소셜 검색)

  • Park, Gun-Woo;Oh, Jung-Woon;Lee, Sang-Hoon
    • The KIPS Transactions:PartD
    • /
    • v.16D no.5
    • /
    • pp.683-690
    • /
    • 2009
  • Social Networks which is composed of network with an individual in the center in a web support mutual-understanding of information by searching user profile and forming new link. Therefore, if we apply the Social Network which consists of web users who have similar immanent information to web search, we can improve efficiency of web search and satisfaction of web user about search results. In this paper, first, we make a Social Network using web users linked directly or indirectly. Next, we calculate Similarity among web users using their immanent information according to topics, and then reconstruct Social Network based on varying Similarity according to topics. Last, we compare Similarity with Search Pattern. As a result of this test, we can confirm a result that among users who have high relationship index, that is, who have strong link strength according to personal attributes have similar search pattern. If such fact is applied to search algorithm, it can be possible to improve search efficiency and reliability in personalized and social search.

Differences in Finding Smartphone Apps across User Types Categorized by App Icon Arrangement Style (스마트폰 사용자의 앱정리 유형에 따른 앱아이콘 탐색의 차이 연구 -아이폰 사용자 중심으로-)

  • Kang, Minjeong
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.11
    • /
    • pp.143-155
    • /
    • 2017
  • In the mobile-first era, plenty of mobile apps have been created so that the number of apps owned in a smartphone have been increasing as well. However, users spend most of time with only a few apps and the rest of apps are just kept in their smartphones for future usage. Thus, in order to help users find the apps quickly it is important to study how users arrange apps in a mobile phone screen and find an app. In the literature, we extracted 5 user types to organize mobile apps. We further conducted user survey with 30 subjects and finalized major 3 user types categorized by relatedness(A), aesthetic(B), and external concepts(C). We found that most of subjects took less than 2 minutes when finding frequently-used-apps. However we identified difference in times taken to find a barely-used-apps across three user types; while A type users turns out to be the most effective in finding barely-used-apps, the B type uses tend to be the least effective among three types. For the A type users, an app's name is more important than an icon image because they tend to guess the functionality from the name of the app. The B type users use the color of app icon to find the app in the smartphone. For the C type users who tend to remain the original position of an app when first downloading it in the smartphone, the visibility of an app icon is important to catch users' eyes while they scan a page. The results of this study is expected to be useful for UX designers who improve the usability of app icon usage considering the user types.

Social Relationship Value Computation based on the Influence of Human Attributes classified by Topics (토픽별 인간 속성의 영향력 기반 소셜 관계 지수 산정)

  • Kwon, Oh-Sang;Park, Gun-Woo;Lee, Sang-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.04a
    • /
    • pp.884-887
    • /
    • 2010
  • 최근 검색엔진의 효율성을 향상시키고 검색결과에 있어서 사용자들의 요구사항을 충족시키기 위한 연구들이 활발히 수행되고 있으며, 많은 방법론들이 제시되고 있다. 이는 방대한 정보 속에서 사용자의 검색 의도에 맞는 정보를 효과적으로 제공하는 것을 그 목표로 한다. 특히 본 논문에서는 검색하고자 하는 토픽별 사용자의 인적 속성들이 미치는 영향력을 기반으로 사용자간 소셜 관계 지수(SRV : Social Relationship Value)를 산정하는 방법을 제안한다. 소셜 관계 지수란 인간의 내재적인 특성을 수치로 산정한 것으로, 웹 사용자들에게 있어서는 검색 성향의 유사정도와 직결된다. 따라서 검색하고자 하는 토픽별 개인 성향의 유사정도를 수치로 부여하고 유사성이 높은 사람들의 검색 정보를 이용하면 사용자에 보다 만족된 검색결과를 제공할 수 있다. 본 연구에서는 구글 디렉터리(Google directory)의 정제된 각 토픽별 하위 범주(category)에 대해 선택 결과가 같은 사람들을 대상으로 인적 속성을 분석하고, 그 영향력을 가중치로 적용해 산정된 소셜 관계 지수와 사용자들의 검색 패턴을 비교 하였다. 그 결과 특정인을 기준으로 소셜 관계 지수가 높은 사람들의 검색 패턴이 매우 유사함을 확인 하였다. 이를 통해 토픽별 개인 간 연결 강도가 강할수록, 즉 유사성이 높은 사용자간에는 검색 패턴 또한 유사함을 검증 할 수 있었다.

Path Selection and Summarization of User's Moving Path for Spatio-Temporal Location Prediction (시공간 위치 예측을 위한 사용자 이동 경로의 선택과 요약 방법)

  • Yoon, Tae-Bok;Lee, Dong-Hoon;Jung, Je-Hee;Lee, Jee-Hyong
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.298-303
    • /
    • 2008
  • User adaptive services have been important features in many applications. To provide such services, various techniques with various kinds of data are being used. In this paper, we propose a method to analyze user's past moving paths for predicting the goal position and the path to the goal by observing the user's current moving path. We develop a spatio-temporal similarity measure between paths. We choose a past path which is the most similar to the current path using the similarity. Based on the chosen path, user's spatio-temporal position is estimated. Through experiments we confirm this method is useful and effective.

  • PDF

Follower classification system based on the similarity of Twitter node information (트위터 사용자정보의 유사성을 기반으로 한 팔로어 분류시스템)

  • Kye, Yong-Sun;Yoon, Youngmi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.1
    • /
    • pp.111-118
    • /
    • 2014
  • Current friend recommendation system on Twitter primarily recommends the most influential twitter. However, this way of recommendation has drawbacks where it does not recommend the users of which attributes of interests are similar to theirs. Since users want other users of which attributes are similar, this study implements follower recommendation system based on the similarity of twitter node informations. The data in this study is from SNAP(Stanford Network Analysis Platform), and it consists of twitter node information of which number of followers is over 10,000 and twitter link information. We used the SNAP data as a training data, and generated a classifier which recommends and predicts the relation between followers. We evaluated the classifier by 10-Fold Cross validation. Once two twitter node informations are given, our model can recommend the relationship of the two twitters as one of following such as: FoFo(Follower Follower), FoFr(Follower Friend), NC(Not Connected).

A Spatiotemporal Location Prediction Method of Moving Objects Based on Path Data (이동 경로 데이터에 기반한 이동 객체의 시공간 위치 예측 기법)

  • Yoon, Tae-Bok;Park, Kyo-Hyun;Lee, Jee-Hyong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.5
    • /
    • pp.568-574
    • /
    • 2006
  • User adaptive services have been important features in many applications. To provide such services, various techniques with various kinds of data are being used. In this paper, we propose a method to analyze user's past moving paths and predict the goal position and the path to the goal by observing the user's current moving path. We develop a spatiotemporal similarity measure between paths. We choose a past path which is the most similar to the current path using the similarity. Based on the chosen path, user's spatiotemporal position is estimated. Through experiments we confirm this method is useful and effective.

Collaborative Filtering System using Self-Organizing Map for Web Personalization (자기 조직화 신경망(SOM)을 이용한 협력적 여과 기법의 웹 개인화 시스템에 대한 연구)

  • 강부식
    • Journal of Intelligence and Information Systems
    • /
    • v.9 no.3
    • /
    • pp.117-135
    • /
    • 2003
  • This study is to propose a procedure solving scale problem of traditional collaborative filtering (CF) approach. The CF approach generally uses some similarity measures like correlation coefficient. So, as the user of the Website increases, the complexity of computation increases exponentially. To solve the scale problem, this study suggests a clustering model-based approach using Self-Organizing Map (SOM) and RFM (Recency, Frequency, Momentary) method. SOM clusters users into some user groups. The preference score of each item in a group is computed using RFM method. The items are sorted and stored in their preference score order. If an active user logins in the system, SOM determines a user group according to the user's characteristics. And the system recommends items to the user using the stored information for the group. If the user evaluates the recommended items, the system determines whether it will be updated or not. Experimental results applied to MovieLens dataset show that the proposed method outperforms than the traditional CF method comparatively in the recommendation performance and the computation complexity.

  • PDF

Counseling Case Retrieval System Using Hierarchical Clustering and Sentence Relevance Feedback (계층적 클러스터링과 문장 적합성 피드백을 이용한 상담사례 검색 시스템)

  • 김승일;곽희규;김수형
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.172-174
    • /
    • 1999
  • 본 논문에서는 카운셀링을 원하는 사용자가 카운셀러와 전자메일을 통해 상담을 원할 때 사용자의 상담 내용에 근거하여 유사한 사례를 검색해 주는 시스템을 제안한다. 제안방법은 문서의 계층적 클러스터링과 용어 적합성 피드백을 상담 사례 검색 시스템에 적용시켜, 상담사례에 나타나는 단어의 출현 빈도와 유사도를 통해 트리 구조를 형성하고, 이 트리 구조를 통한 하향 탐색을 수행한다. 하향 탐색을 하는 도중 노드의 매칭함수의 값이 서로 유사하여 노드 선택이 어려울 경우, 사용자에게 질의를 통해 용어를 제시하고, 사용자의 피드백을 통해 입력된 사연 내용의 가중치를 개선하여 내용에 가장 부합되는 문서를 탐색한다.

  • PDF

Quantitative Incision Skill Assessment for Computer-based Surgery Simulator (컴퓨터 기반 수술 훈련 시뮬레이터를 위한 정량적 절개 숙련도 평가 기법)

  • Kim, Seok-Yeol;Park, Jin-Ah
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06b
    • /
    • pp.282-285
    • /
    • 2011
  • 효과적인 수술 훈련 시뮬레이터를 구축하기 위해서는 사실적인 훈련 환경을 제공하는 것뿐만 아니라 훈련 결과를 바탕으로 사용자의 숙련도를 객관적으로 측정하고 평가하는 과정 또한 중요하다. 이를 위해 본 연구는 수술 훈련 중 큰 비중을 차지하는 절개 동작에 대한 정량적 평가 척도를 제공하는 것을 목표로 한다. 사용자가 가상 장기 모델에 대해 절개를 수행하는 동안 평가 시스템은 절개 경로와 깊이를 일정 간격으로 샘플링하여 저장하고, 이를 두 곡선 간의 유사성 측정 알고리즘을 통해 훈련 시나리오 상에 정의된 표준 절개 경로와 깊이, 속도를 각각 비교한다. 이렇게 계산된 두 경로 사이의 거리가 가까울수록 유사성이 높은 것으로 간주하며, 사전에 설정된 기준치 이상의 유사성을 기록할 경우 훈련 목표를 충족한 것으로 판단할 수 있다. 본 연구에서는 단순 거리 측정에 의존한 일반적인 경로의 유사성 판단 알고리즘의 문제점을 제시하고, 전체 절개 경로의 길이 대비 현재까지 진행된 정도를 매개변수로 하는 방법을 이용하여 절개 경로의 방향을 고려한 유사성 측정 알고리즘을 제안하였다. 이와 같이 정량적이며 자동화된 절개 숙련도 평가 기법을 제안함으로써 사용자의 훈련 결과에 대해 보다 객관적인 피드백을 제공 할 수 있다.

A Research of Documents Similarity Measuring Based on Word Weight (단어가중치 기반 문서간 유사도 측정에 관한 연구)

  • 김혜숙;박상철;김수형
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.198-201
    • /
    • 2003
  • 사용자의 요구 사항을 정확히 분석하여 효과적으로 개발 단계에 적용하기 위해 문서간의 의존성, 즉 상·하위 문서간의 연계성 등을 측정할 수 있는 방법에 대한 연구가 절실한데 이를 위해 적게는 두 용어가 얼마나 밀접한 관련이 있는가를 나타내는 용어간의 유사도 정보가 중요시된다. 이에 본 논문은 임의의 두 문서에 대한 다양한 유사도 측정방법을 통하여 최적의 유사도를 알아보고 두 문서간 유사여부를 검증하기 위해 Neural Network을 적용하였다. 이러한 유사도 측정과 검증 방법은 분산환경에서 입력되는 요구사항 문서들을 효율적으로 분류, 관리해 줄 수 있으며 사용자 요구사항 분석과 전체 Project 수행에 좋은 기초자료를 제공해 줄 수 있다.

  • PDF