Social Networks which is composed of network with an individual in the center in a web support mutual-understanding of information by searching user profile and forming new link. Therefore, if we apply the Social Network which consists of web users who have similar immanent information to web search, we can improve efficiency of web search and satisfaction of web user about search results. In this paper, first, we make a Social Network using web users linked directly or indirectly. Next, we calculate Similarity among web users using their immanent information according to topics, and then reconstruct Social Network based on varying Similarity according to topics. Last, we compare Similarity with Search Pattern. As a result of this test, we can confirm a result that among users who have high relationship index, that is, who have strong link strength according to personal attributes have similar search pattern. If such fact is applied to search algorithm, it can be possible to improve search efficiency and reliability in personalized and social search.
In the mobile-first era, plenty of mobile apps have been created so that the number of apps owned in a smartphone have been increasing as well. However, users spend most of time with only a few apps and the rest of apps are just kept in their smartphones for future usage. Thus, in order to help users find the apps quickly it is important to study how users arrange apps in a mobile phone screen and find an app. In the literature, we extracted 5 user types to organize mobile apps. We further conducted user survey with 30 subjects and finalized major 3 user types categorized by relatedness(A), aesthetic(B), and external concepts(C). We found that most of subjects took less than 2 minutes when finding frequently-used-apps. However we identified difference in times taken to find a barely-used-apps across three user types; while A type users turns out to be the most effective in finding barely-used-apps, the B type uses tend to be the least effective among three types. For the A type users, an app's name is more important than an icon image because they tend to guess the functionality from the name of the app. The B type users use the color of app icon to find the app in the smartphone. For the C type users who tend to remain the original position of an app when first downloading it in the smartphone, the visibility of an app icon is important to catch users' eyes while they scan a page. The results of this study is expected to be useful for UX designers who improve the usability of app icon usage considering the user types.
Proceedings of the Korea Information Processing Society Conference
/
2010.04a
/
pp.884-887
/
2010
최근 검색엔진의 효율성을 향상시키고 검색결과에 있어서 사용자들의 요구사항을 충족시키기 위한 연구들이 활발히 수행되고 있으며, 많은 방법론들이 제시되고 있다. 이는 방대한 정보 속에서 사용자의 검색 의도에 맞는 정보를 효과적으로 제공하는 것을 그 목표로 한다. 특히 본 논문에서는 검색하고자 하는 토픽별 사용자의 인적 속성들이 미치는 영향력을 기반으로 사용자간 소셜 관계 지수(SRV : Social Relationship Value)를 산정하는 방법을 제안한다. 소셜 관계 지수란 인간의 내재적인 특성을 수치로 산정한 것으로, 웹 사용자들에게 있어서는 검색 성향의 유사정도와 직결된다. 따라서 검색하고자 하는 토픽별 개인 성향의 유사정도를 수치로 부여하고 유사성이 높은 사람들의 검색 정보를 이용하면 사용자에 보다 만족된 검색결과를 제공할 수 있다. 본 연구에서는 구글 디렉터리(Google directory)의 정제된 각 토픽별 하위 범주(category)에 대해 선택 결과가 같은 사람들을 대상으로 인적 속성을 분석하고, 그 영향력을 가중치로 적용해 산정된 소셜 관계 지수와 사용자들의 검색 패턴을 비교 하였다. 그 결과 특정인을 기준으로 소셜 관계 지수가 높은 사람들의 검색 패턴이 매우 유사함을 확인 하였다. 이를 통해 토픽별 개인 간 연결 강도가 강할수록, 즉 유사성이 높은 사용자간에는 검색 패턴 또한 유사함을 검증 할 수 있었다.
User adaptive services have been important features in many applications. To provide such services, various techniques with various kinds of data are being used. In this paper, we propose a method to analyze user's past moving paths for predicting the goal position and the path to the goal by observing the user's current moving path. We develop a spatio-temporal similarity measure between paths. We choose a past path which is the most similar to the current path using the similarity. Based on the chosen path, user's spatio-temporal position is estimated. Through experiments we confirm this method is useful and effective.
Journal of the Korea Society of Computer and Information
/
v.19
no.1
/
pp.111-118
/
2014
Current friend recommendation system on Twitter primarily recommends the most influential twitter. However, this way of recommendation has drawbacks where it does not recommend the users of which attributes of interests are similar to theirs. Since users want other users of which attributes are similar, this study implements follower recommendation system based on the similarity of twitter node informations. The data in this study is from SNAP(Stanford Network Analysis Platform), and it consists of twitter node information of which number of followers is over 10,000 and twitter link information. We used the SNAP data as a training data, and generated a classifier which recommends and predicts the relation between followers. We evaluated the classifier by 10-Fold Cross validation. Once two twitter node informations are given, our model can recommend the relationship of the two twitters as one of following such as: FoFo(Follower Follower), FoFr(Follower Friend), NC(Not Connected).
Journal of the Korean Institute of Intelligent Systems
/
v.16
no.5
/
pp.568-574
/
2006
User adaptive services have been important features in many applications. To provide such services, various techniques with various kinds of data are being used. In this paper, we propose a method to analyze user's past moving paths and predict the goal position and the path to the goal by observing the user's current moving path. We develop a spatiotemporal similarity measure between paths. We choose a past path which is the most similar to the current path using the similarity. Based on the chosen path, user's spatiotemporal position is estimated. Through experiments we confirm this method is useful and effective.
This study is to propose a procedure solving scale problem of traditional collaborative filtering (CF) approach. The CF approach generally uses some similarity measures like correlation coefficient. So, as the user of the Website increases, the complexity of computation increases exponentially. To solve the scale problem, this study suggests a clustering model-based approach using Self-Organizing Map (SOM) and RFM (Recency, Frequency, Momentary) method. SOM clusters users into some user groups. The preference score of each item in a group is computed using RFM method. The items are sorted and stored in their preference score order. If an active user logins in the system, SOM determines a user group according to the user's characteristics. And the system recommends items to the user using the stored information for the group. If the user evaluates the recommended items, the system determines whether it will be updated or not. Experimental results applied to MovieLens dataset show that the proposed method outperforms than the traditional CF method comparatively in the recommendation performance and the computation complexity.
Proceedings of the Korean Information Science Society Conference
/
1999.10b
/
pp.172-174
/
1999
본 논문에서는 카운셀링을 원하는 사용자가 카운셀러와 전자메일을 통해 상담을 원할 때 사용자의 상담 내용에 근거하여 유사한 사례를 검색해 주는 시스템을 제안한다. 제안방법은 문서의 계층적 클러스터링과 용어 적합성 피드백을 상담 사례 검색 시스템에 적용시켜, 상담사례에 나타나는 단어의 출현 빈도와 유사도를 통해 트리 구조를 형성하고, 이 트리 구조를 통한 하향 탐색을 수행한다. 하향 탐색을 하는 도중 노드의 매칭함수의 값이 서로 유사하여 노드 선택이 어려울 경우, 사용자에게 질의를 통해 용어를 제시하고, 사용자의 피드백을 통해 입력된 사연 내용의 가중치를 개선하여 내용에 가장 부합되는 문서를 탐색한다.
Proceedings of the Korean Information Science Society Conference
/
2011.06b
/
pp.282-285
/
2011
효과적인 수술 훈련 시뮬레이터를 구축하기 위해서는 사실적인 훈련 환경을 제공하는 것뿐만 아니라 훈련 결과를 바탕으로 사용자의 숙련도를 객관적으로 측정하고 평가하는 과정 또한 중요하다. 이를 위해 본 연구는 수술 훈련 중 큰 비중을 차지하는 절개 동작에 대한 정량적 평가 척도를 제공하는 것을 목표로 한다. 사용자가 가상 장기 모델에 대해 절개를 수행하는 동안 평가 시스템은 절개 경로와 깊이를 일정 간격으로 샘플링하여 저장하고, 이를 두 곡선 간의 유사성 측정 알고리즘을 통해 훈련 시나리오 상에 정의된 표준 절개 경로와 깊이, 속도를 각각 비교한다. 이렇게 계산된 두 경로 사이의 거리가 가까울수록 유사성이 높은 것으로 간주하며, 사전에 설정된 기준치 이상의 유사성을 기록할 경우 훈련 목표를 충족한 것으로 판단할 수 있다. 본 연구에서는 단순 거리 측정에 의존한 일반적인 경로의 유사성 판단 알고리즘의 문제점을 제시하고, 전체 절개 경로의 길이 대비 현재까지 진행된 정도를 매개변수로 하는 방법을 이용하여 절개 경로의 방향을 고려한 유사성 측정 알고리즘을 제안하였다. 이와 같이 정량적이며 자동화된 절개 숙련도 평가 기법을 제안함으로써 사용자의 훈련 결과에 대해 보다 객관적인 피드백을 제공 할 수 있다.
Proceedings of the Korea Multimedia Society Conference
/
2003.05b
/
pp.198-201
/
2003
사용자의 요구 사항을 정확히 분석하여 효과적으로 개발 단계에 적용하기 위해 문서간의 의존성, 즉 상·하위 문서간의 연계성 등을 측정할 수 있는 방법에 대한 연구가 절실한데 이를 위해 적게는 두 용어가 얼마나 밀접한 관련이 있는가를 나타내는 용어간의 유사도 정보가 중요시된다. 이에 본 논문은 임의의 두 문서에 대한 다양한 유사도 측정방법을 통하여 최적의 유사도를 알아보고 두 문서간 유사여부를 검증하기 위해 Neural Network을 적용하였다. 이러한 유사도 측정과 검증 방법은 분산환경에서 입력되는 요구사항 문서들을 효율적으로 분류, 관리해 줄 수 있으며 사용자 요구사항 분석과 전체 Project 수행에 좋은 기초자료를 제공해 줄 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.