• Title/Summary/Keyword: 사용자 리뷰 분류

Search Result 46, Processing Time 0.03 seconds

A Design of a System for Customized Comparison and Evaluation of Books Using Integrated Review Emotion Words Analysis (통합 리뷰 감정 분석을 통한 맞춤형 도서 비교 및 평가 시스템 설계)

  • Yu, Da-bin;Ryu, Hye-jin;Kim, Na-ra;Kim, Yoon-hee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.04a
    • /
    • pp.108-111
    • /
    • 2015
  • 아직까지도 도서 구매자의 대다수는 도서를 구매할 시 오프라인 서점을 이용하며, 외부 의견은 도서 구매 결정에 커다란 영향을 마치는 것으로 나타났다. 이에 따라 대표적 외부 의견인 도서의 리뷰를 가공 분석하여 제공하는 모바일 기반의 시스템의 필요성이 대두되었다. 하지만 현재 마켓에 등록된 애플리케이션의 대다수는 도서에 대한 사용자의 리뷰를 제공하지 않거나 분류 분석되지 않은 상태의 리뷰를 제공한다. 따라서 본 논문에서는 각 도서의 리뷰를 수집하여 리뷰의 긍정 부정적 감정 추이를 분석하고 그 결과를 리뷰 핵심어에 따라 분류된 도서 평가 기준 별로 제공하며 이를 통해 사용자의 도서 구매 결정과 여러 도서간의 도서 선택에 도움을 줄 수 있는 모바일 애플리케이션을 설계하였다.

Dictionary-Based Opinion Features Extraction and Classification of Korean Product Reviews (사전기반의 한국어 상품 리뷰 의견표현 자질 추출 및 분류시스템)

  • Sangguen Yuk
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.631-634
    • /
    • 2008
  • 인터넷을 이용한 사람들의 사회 참여가 확대되면서 다양한 의견(Opinion)들이 급속도로 증가하고 있으며 이러한 의견을 분석하여 유용한 정보로 활용하기 위한 연구가 활발히 진행되고 있다. 그 중에서도 상품리뷰는 기업에서 연구, 개발, 마케팅의 주요 자료로 사용되고 있으며 사용자가 상품의 구매를 결정하는 중요한 요인 중 하나로 작용하고 있다. 본 논문에서는 한국어로 이루어진 상품 리뷰를 분석하여 의견 자질(Feature)을 추출하고 분류(Classification)하는 시스템을 설계하고 구현하였다. 한글 의견 자질 추출을 위하여 먼저 한글 상품 리뷰를 분석하여 의견 사전을 구축하였다. 의견 사전으로는 의견 자질과 의견 어휘, 독립의견어휘, 의견 숙어, 부정어 등의 각기 다른 세부 사전을 구축하여 리뷰 분석 시 단계적으로 적용하여 정확도를 높일 수 있도록 설계하였다. 이렇게 구현된 시스템을 평가하기 위하여 각기 다른 3개의 도메인에서 실제 한국어 리뷰를 수집하여 실험을 수행하였으며 자질 추출에서는 평균 78.86% 정확률, 61.41% 재현율을, 극성 분류에서는 평균 69.46% 정확률, 42.26% 재현율을 나타냈다.

Development of An Automatic Classification System for Game Reviews Based on Word Embedding and Vector Similarity (단어 임베딩 및 벡터 유사도 기반 게임 리뷰 자동 분류 시스템 개발)

  • Yang, Yu-Jeong;Lee, Bo-Hyun;Kim, Jin-Sil;Lee, Ki Yong
    • The Journal of Society for e-Business Studies
    • /
    • v.24 no.2
    • /
    • pp.1-14
    • /
    • 2019
  • Because of the characteristics of game software, it is important to quickly identify and reflect users' needs into game software after its launch. However, most sites such as the Google Play Store, where users can download games and post reviews, provide only very limited and ambiguous classification categories for game reviews. Therefore, in this paper, we develop an automatic classification system for game reviews that categorizes reviews into categories that are clearer and more useful for game providers. The developed system converts words in reviews into vectors using word2vec, which is a representative word embedding model, and classifies reviews into the most relevant categories by measuring the similarity between those vectors and each category. Especially, in order to choose the best similarity measure that directly affects the classification performance of the system, we have compared the performance of three representative similarity measures, the Euclidean similarity, cosine similarity, and the extended Jaccard similarity, in a real environment. Furthermore, to allow a review to be classified into multiple categories, we use a threshold-based multi-category classification method. Through experiments on real reviews collected from Google Play Store, we have confirmed that the system achieved up to 95% accuracy.

Multimodal Sentiment Analysis Using Review Data and Product Information (리뷰 데이터와 제품 정보를 이용한 멀티모달 감성분석)

  • Hwang, Hohyun;Lee, Kyeongchan;Yu, Jinyi;Lee, Younghoon
    • The Journal of Society for e-Business Studies
    • /
    • v.27 no.1
    • /
    • pp.15-28
    • /
    • 2022
  • Due to recent expansion of online market such as clothing, utilizing customer review has become a major marketing measure. User review has been used as a tool of analyzing sentiment of customers. Sentiment analysis can be largely classified with machine learning-based and lexicon-based method. Machine learning-based method is a learning classification model referring review and labels. As research of sentiment analysis has been developed, multi-modal models learned by images and video data in reviews has been studied. Characteristics of words in reviews are differentiated depending on products' and customers' categories. In this paper, sentiment is analyzed via considering review data and metadata of products and users. Gated Recurrent Unit (GRU), Long Short-Term Memory (LSTM), Self Attention-based Multi-head Attention models and Bidirectional Encoder Representation from Transformer (BERT) are used in this study. Same Multi-Layer Perceptron (MLP) model is used upon every products information. This paper suggests a multi-modal sentiment analysis model that simultaneously considers user reviews and product meta-information.

A Study on Classification of Mobile Application Reviews Using Deep Learning (딥러닝을 활용한 모바일 어플리케이션 리뷰 분류에 관한 연구)

  • Son, Jae Ik;Noh, Mi Jin;Rahman, Tazizur;Pyo, Gyujin;Han, Mumoungcho;Kim, Yang Sok
    • Smart Media Journal
    • /
    • v.10 no.2
    • /
    • pp.76-83
    • /
    • 2021
  • With the development and use of smart devices such as smartphones and tablets increases, the mobile application market based on mobile devices is growing rapidly. Mobile application users write reviews to share their experience in using the application, which can identify consumers' various needs and application developers can receive useful feedback on improving the application through reviews written by consumers. However, there is a need to come up with measures to minimize the amount of time and expense that consumers have to pay to manually analyze the large amount of reviews they leave. In this work, we propose to collect delivery application user reviews from Google PlayStore and then use machine learning and deep learning techniques to classify them into four categories like application feature advantages, disadvantages, feature improvement requests and bug report. In the case of the performance of the Hugging Face's pretrained BERT-based Transformer model, the f1 score values for the above four categories were 0.93, 0.51, 0.76, and 0.83, respectively, showing superior performance than LSTM and GRU.

Design and implementation of a satisfaction and category classifier for game reviews based on deep learning (딥러닝 기반 게임 리뷰 만족도 및 카테고리 분류 시스템 설계 및 개발)

  • Yang, Yu-Jeong;Lee, Bo-Hyun;Kim, Jin-Sil;Lee, Ki Yong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.729-732
    • /
    • 2018
  • 모바일 게임 산업의 발달로 많은 사용자들이 게임을 이용하면서, 그들의 만족감을 사용리뷰를 통해 드러낸다. 실제로 각 리뷰의 범주가 모두 다르지만 현재 구글 플레이 앱스토어(Google Play App Store)의 게임 리뷰 범주는 3가지로 매우 제한적이다. 따라서 본 연구에서는 빠르고 정확한 고객의 요구를 필요로 하는 게임 소프트웨어의 특성을 고려하여 게임 리뷰를 입력했을 때, 게임의 운영 및 시스템에 맞도록 리뷰의 카테고리를 세분화하고 만족도를 분석하는 시스템을 개발한다. 제안 시스템은 인공신경망 모델인 CNN을 평점을 기반으로 훈련시켜 리뷰에 대한 만족도를 도출한다. 또한 Word2Vec을 이용해 단어들 간의 유사도를 구하고, 이를 활용한 단어 배열을 이용하여 가장 스코어가 높은 카테고리로 배정한다. 본 논문은 제안한 리뷰 만족도 및 카테고리 분류 시스템이 실제 효과적으로 리뷰를 보다 의미 있는 정보로써 제공할 수 있음을 보인다.

A Crowdsourcing-Based Paraphrased Opinion Spam Dataset and Its Implication on Detection Performance (크라우드소싱 기반 문장재구성 방법을 통한 의견 스팸 데이터셋 구축 및 평가)

  • Lee, Seongwoon;Kim, Seongsoon;Park, Donghyeon;Kang, Jaewoo
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.7
    • /
    • pp.338-343
    • /
    • 2016
  • Today, opinion reviews on the Web are often used as a means of information exchange. As the importance of opinion reviews continues to grow, the number of issues for opinion spam also increases. Even though many research studies on detecting spam reviews have been conducted, some limitations of gold-standard datasets hinder research. Therefore, we introduce a new dataset called "Paraphrased Opinion Spam (POS)" that contains a new type of review spam that imitates truthful reviews. We have noticed that spammers refer to existing truthful reviews to fabricate spam reviews. To create such a seemingly truthful review spam dataset, we asked task participants to paraphrase truthful reviews to create a new deceptive review. The experiment results show that classifying our POS dataset is more difficult than classifying the existing spam datasets since the reviews in our dataset more linguistically look like truthful reviews. Also, training volume has been found to be an important factor for classification model performance.

Aspect Based Sentiment Analysis System of Hotel Review, Reflecting User's Preference (감성분석 기반 호텔 리뷰의 특성별 극성 분석 및 유저의 선호도 반영 시스템)

  • Shim, Hayeong;OH, Sujin;Kim, Ung-Mo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.281-284
    • /
    • 2018
  • 인터넷을 통해 정보를 쉽게 공유하게 되면서 소비자는 제품이나 서비스를 이용하기 전 효율적인 의사 결정을 위해 먼저 작성된 다른 사람의 의견을 참고한다. 또한 기업은 이러한 소비자의 의견을 수집하여 제품의 피드백이나 마케팅 등 비즈니스적인 측면으로 활용한다. 수많은 상품평과 후기에서 특정 제품 또는 서비스에 대한 감성을 식별할 수 있다는 점에서, 감성분석은 소비자와 기업 모두에게 주목받고 있는 기술이다. 합리적인 결정을 위해, 소비자는 해당 웹사이트에서 제공하는 데이터를 참고하며, 이 데이터는 웹사이트마다의 기준에 따라 필터링된다. 하지만 제품/서비스에 따라 개인이 중시하는 부분이 다르기 때문에, 실질적으로는 다른 사용자의 의견을 참고하여 합리적인 결정을 내린다. 본 논문은 호텔의 리뷰를 여덟 가지 특성으로 구분하고, 각 특성별로 극성을 분석한다. 또한 사용자가 선호하는 특성에 가중치를 부여하여 순위를 나타내는 시스템을 제안한다. 극성분석 단계에서는 주어진 리뷰를 여덟 가지 특성으로 분류하고, 긍정/부정의 극성으로 분류하는 기계학습 알고리즘을 사용한다. 각각의 특성에 대해 가중치를 적용하여 얻을 수 있는 순서는 기존에 제공되는 순서보다 사용자의 선호도를 정확히 반영한다, 또한 본 논문의 제안을 호텔뿐만 아니라 다양한 제품/서비스에 적용하여 선호도를 반영한 순위 정보를 제공한다면 소비자의 합리적인 의사 결정에 도움을 줄 것이다.

A Study on Detecting Fake Reviews Using Machine Learning: Focusing on User Behavior Analysis (머신러닝을 활용한 가짜리뷰 탐지 연구: 사용자 행동 분석을 중심으로)

  • Lee, Min Cheol;Yoon, Hyun Shik
    • Knowledge Management Research
    • /
    • v.21 no.3
    • /
    • pp.177-195
    • /
    • 2020
  • The social consciousness on fake reviews has triggered researchers to suggest ways to cope with them by analyzing contents of fake reviews or finding ways to discover them by means of structural characteristics of them. This research tried to collect data from blog posts in Naver and detect habitual patterns users use unconsciously by variables extracted from blogs and blog posts by a machine learning model and wanted to use the technique in predicting fake reviews. Data analysis showed that there was a very high relationship between the number of all the posts registered in the blog of the writer of the related writing and the date when it was registered. And, it was found that, as model to detect advertising reviews, Random Forest is the most suitable. If a review is predicted to be an advertising one by the model suggested in this research, it is very likely that it is fake review, and that it violates the guidelines on investigation into markings and advertising regarding recommendation and guarantee in the Law of Marking and Advertising. The fact that, instead of using analysis of morphemes in contents of writings, this research adopts behavior analysis of the writer, and, based on such an approach, collects characteristic data of blogs and blog posts not by manual works, but by automated system, and discerns whether a certain writing is advertising or not is expected to have positive effects on improving efficiency and effectiveness in detecting fake reviews.

Establish Marketing Strategy Using Analysis of Local Currency App User Reviews -Focused on 'Dongbackjeon' and 'Incheoneum' (지역화폐 앱 사용자 리뷰 분석을 통한 마케팅 전략 수립 - '동백전'과 '인천e음'을 중심으로)

  • Lee, Sae-Mi;Lee, Taewon
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.4
    • /
    • pp.111-122
    • /
    • 2021
  • This study analyzed user reviews of Dongbaekjeon and Incheoneum app, which are representative local currencies in Korea, to identify the positive/negative factors of local currency users, and established a marketing strategy based on this. App user reviews were classified into positive and negative based on the star rating, and word cloud, topic modeling, and social network analysis were performed, respectively. As a result, in the negative reviews of Dongbaekjeon and Incheoneum, dissatisfaction with app use and card issuance appeared in common. In positive reviews, keywords such as 'local economy' and 'small business owners' along with satisfaction with 'cashback' appeared. It means that local currency users perceived that their consumption support local economy, and they felt satisfaction in using local currency. Based on the satisfaction/dissatisfaction factors identified as a result of the analysis of this study, we identified what needs to be improved and to be strengthened, and appropriate marketing strategies were established. The text mining method used in this study and research results can provide meaningful information about local currencies to public officials and marketers in charge of local currencies.