• Title/Summary/Keyword: 사용자 관심

Search Result 2,456, Processing Time 0.028 seconds

Applying Meta-model Formalization of Part-Whole Relationship to UML: Experiment on Classification of Aggregation and Composition (UML의 부분-전체 관계에 대한 메타모델 형식화 이론의 적용: 집합연관 및 복합연관 판별 실험)

  • Kim, Taekyung
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.99-118
    • /
    • 2015
  • Object-oriented programming languages have been widely selected for developing modern information systems. The use of concepts relating to object-oriented (OO, in short) programming has reduced efforts of reusing pre-existing codes, and the OO concepts have been proved to be a useful in interpreting system requirements. In line with this, we have witnessed that a modern conceptual modeling approach supports features of object-oriented programming. Unified Modeling Language or UML becomes one of de-facto standards for information system designers since the language provides a set of visual diagrams, comprehensive frameworks and flexible expressions. In a modeling process, UML users need to consider relationships between classes. Based on an explicit and clear representation of classes, the conceptual model from UML garners necessarily attributes and methods for guiding software engineers. Especially, identifying an association between a class of part and a class of whole is included in the standard grammar of UML. The representation of part-whole relationship is natural in a real world domain since many physical objects are perceived as part-whole relationship. In addition, even abstract concepts such as roles are easily identified by part-whole perception. It seems that a representation of part-whole in UML is reasonable and useful. However, it should be admitted that the use of UML is limited due to the lack of practical guidelines on how to identify a part-whole relationship and how to classify it into an aggregate- or a composite-association. Research efforts on developing the procedure knowledge is meaningful and timely in that misleading perception to part-whole relationship is hard to be filtered out in an initial conceptual modeling thus resulting in deterioration of system usability. The current method on identifying and classifying part-whole relationships is mainly counting on linguistic expression. This simple approach is rooted in the idea that a phrase of representing has-a constructs a par-whole perception between objects. If the relationship is strong, the association is classified as a composite association of part-whole relationship. In other cases, the relationship is an aggregate association. Admittedly, linguistic expressions contain clues for part-whole relationships; therefore, the approach is reasonable and cost-effective in general. Nevertheless, it does not cover concerns on accuracy and theoretical legitimacy. Research efforts on developing guidelines for part-whole identification and classification has not been accumulated sufficient achievements to solve this issue. The purpose of this study is to provide step-by-step guidelines for identifying and classifying part-whole relationships in the context of UML use. Based on the theoretical work on Meta-model Formalization, self-check forms that help conceptual modelers work on part-whole classes are developed. To evaluate the performance of suggested idea, an experiment approach was adopted. The findings show that UML users obtain better results with the guidelines based on Meta-model Formalization compared to a natural language classification scheme conventionally recommended by UML theorists. This study contributed to the stream of research effort about part-whole relationships by extending applicability of Meta-model Formalization. Compared to traditional approaches that target to establish criterion for evaluating a result of conceptual modeling, this study expands the scope to a process of modeling. Traditional theories on evaluation of part-whole relationship in the context of conceptual modeling aim to rule out incomplete or wrong representations. It is posed that qualification is still important; but, the lack of consideration on providing a practical alternative may reduce appropriateness of posterior inspection for modelers who want to reduce errors or misperceptions about part-whole identification and classification. The findings of this study can be further developed by introducing more comprehensive variables and real-world settings. In addition, it is highly recommended to replicate and extend the suggested idea of utilizing Meta-model formalization by creating different alternative forms of guidelines including plugins for integrated development environments.

Social Tagging-based Recommendation Platform for Patented Technology Transfer (특허의 기술이전 활성화를 위한 소셜 태깅기반 지적재산권 추천플랫폼)

  • Park, Yoon-Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.53-77
    • /
    • 2015
  • Korea has witnessed an increasing number of domestic patent applications, but a majority of them are not utilized to their maximum potential but end up becoming obsolete. According to the 2012 National Congress' Inspection of Administration, about 73% of patents possessed by universities and public-funded research institutions failed to lead to creating social values, but remain latent. One of the main problem of this issue is that patent creators such as individual researcher, university, or research institution lack abilities to commercialize their patents into viable businesses with those enterprises that are in need of them. Also, for enterprises side, it is hard to find the appropriate patents by searching keywords on all such occasions. This system proposes a patent recommendation system that can identify and recommend intellectual rights appropriate to users' interested fields among a rapidly accumulating number of patent assets in a more easy and efficient manner. The proposed system extracts core contents and technology sectors from the existing pool of patents, and combines it with secondary social knowledge, which derives from tags information created by users, in order to find the best patents recommended for users. That is to say, in an early stage where there is no accumulated tag information, the recommendation is done by utilizing content characteristics, which are identified through an analysis of key words contained in such parameters as 'Title of Invention' and 'Claim' among the various patent attributes. In order to do this, the suggested system extracts only nouns from patents and assigns a weight to each noun according to the importance of it in all patents by performing TF-IDF analysis. After that, it finds patents which have similar weights with preferred patents by a user. In this paper, this similarity is called a "Domain Similarity". Next, the suggested system extract technology sector's characteristics from patent document by analyzing the international technology classification code (International Patent Classification, IPC). Every patents have more than one IPC, and each user can attach more than one tag to the patents they like. Thus, each user has a set of IPC codes included in tagged patents. The suggested system manages this IPC set to analyze technology preference of each user and find the well-fitted patents for them. In order to do this, the suggeted system calcuates a 'Technology_Similarity' between a set of IPC codes and IPC codes contained in all other patents. After that, when the tag information of multiple users are accumulated, the system expands the recommendations in consideration of other users' social tag information relating to the patent that is tagged by a concerned user. The similarity between tag information of perferred 'patents by user and other patents are called a 'Social Simialrity' in this paper. Lastly, a 'Total Similarity' are calculated by adding these three differenent similarites and patents having the highest 'Total Similarity' are recommended to each user. The suggested system are applied to a total of 1,638 korean patents obtained from the Korea Industrial Property Rights Information Service (KIPRIS) run by the Korea Intellectual Property Office. However, since this original dataset does not include tag information, we create virtual tag information and utilized this to construct the semi-virtual dataset. The proposed recommendation algorithm was implemented with JAVA, a computer programming language, and a prototype graphic user interface was also designed for this study. As the proposed system did not have dependent variables and uses virtual data, it is impossible to verify the recommendation system with a statistical method. Therefore, the study uses a scenario test method to verify the operational feasibility and recommendation effectiveness of the system. The results of this study are expected to improve the possibility of matching promising patents with the best suitable businesses. It is assumed that users' experiential knowledge can be accumulated, managed, and utilized in the As-Is patent system, which currently only manages standardized patent information.

Adaptive Lock Escalation in Database Management Systems (데이타베이스 관리 시스템에서의 적응형 로크 상승)

  • Chang, Ji-Woong;Lee, Young-Koo;Whang, Kyu-Young;Yang, Jae-Heon
    • Journal of KIISE:Databases
    • /
    • v.28 no.4
    • /
    • pp.742-757
    • /
    • 2001
  • Since database management systems(DBMSS) have limited lock resources, transactions requesting locks beyond the limit mutt be aborted. In the worst carte, if such transactions are aborted repeatedly, the DBMS can become paralyzed, i.e., transaction execute but cannot commit. Lock escalation is considered a solution to this problem. However, existing lock escalation methods do not provide a complete solution. In this paper, we prognose a new lock escalation method, adaptive lock escalation, that selves most of the problems. First, we propose a general model for lock escalation and present the concept of the unescalatable look, which is the major cause making the transactions to abort. Second, we propose the notions of semi lock escalation, lock blocking, and selective relief as the mechanisms to control the number of unescalatable locks. We then propose the adaptive lock escalation method using these notions. Adaptive lock escalation reduces needless aborts and guarantees that the DBMS is not paralyzed under excessive lock requests. It also allows graceful degradation of performance under those circumstances. Third, through extensive simulation, we show that adaptive lock escalation outperforms existing lock escalation methods. The results show that, compared to the existing methods, adaptive lock escalation reduces the number of aborts and the average response time, and increases the throughput to a great extent. Especially, it is shown that the number of concurrent transactions can be increased more than 16 ~256 fold. The contribution of this paper is significant in that it has formally analysed the role of lock escalation in lock resource management and identified the detailed underlying mechanisms. Existing lock escalation methods rely on users or system administrator to handle the problems of excessive lock requests. In contrast, adaptive lock escalation releases the users of this responsibility by providing graceful degradation and preventing system paralysis through automatic control of unescalatable locks Thus adaptive lock escalation can contribute to developing self-tuning: DBMSS that draw a lot of attention these days.

  • PDF

Study on the channel of bipolar plate for PEM fuel cell (고분자 전해질 연료전지용 바이폴라 플레이트의 유로 연구)

  • Ahn Bum Jong;Ko Jae-Churl;Jo Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.2 s.23
    • /
    • pp.15-27
    • /
    • 2004
  • The purpose of this paper is to improve the performance of Polymer electrolyte fuel cell(PEMFC) by studying the channel dimension of bipolar plates using commercial CFD program 'Fluent'. Simulations are done ranging from 0.5 to 3.0mm for different size in order to find the channel size which shoves the highst hydrogen consumption. The results showed that the smaller channel width, land width, channel depth, the higher hydrogen consumption in anode. When channel width is increased, the pressure drop in channel is decreased because total channel length Is decreased, and when land width is increased, the net hydrogen consumption is decreased because hydrogen is diffused under the land width. It is also found that the influence of hydrogen consumption is larger at different channel width than it at different land width. The change of hydrogen consumption with different channel depth isn't as large as it with different channel width, but channel depth has to be small as can as it does because it has influence on the volume of bipolar plates. however the hydrogen utilization among the channel sizes more than 1.0mm which can be machined in reality is the most at channel width 1.0, land width 1.0, channel depth 0.5mm and considered as optimum channel size. The fuel cell combined with 2cm${\times}$2cm diagonal or serpentine type flow field and MEA(Membrane Electrode Assembly) is tested using 100W PEMFC test station to confirm that the channel size studied in simulation. The results showed that diagonal and serpentine flow field have similarly high OCV and current density of diagonal (low field is higher($2-40mA/m^2$) than that of serpentine flow field under 0.6 voltage, but the current density of serpentine type has higher performance($5-10mA/m^2$) than that of diagonal flow field under 0.7-0.8 voltage.

  • PDF

Conditional Generative Adversarial Network based Collaborative Filtering Recommendation System (Conditional Generative Adversarial Network(CGAN) 기반 협업 필터링 추천 시스템)

  • Kang, Soyi;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.157-173
    • /
    • 2021
  • With the development of information technology, the amount of available information increases daily. However, having access to so much information makes it difficult for users to easily find the information they seek. Users want a visualized system that reduces information retrieval and learning time, saving them from personally reading and judging all available information. As a result, recommendation systems are an increasingly important technologies that are essential to the business. Collaborative filtering is used in various fields with excellent performance because recommendations are made based on similar user interests and preferences. However, limitations do exist. Sparsity occurs when user-item preference information is insufficient, and is the main limitation of collaborative filtering. The evaluation value of the user item matrix may be distorted by the data depending on the popularity of the product, or there may be new users who have not yet evaluated the value. The lack of historical data to identify consumer preferences is referred to as data sparsity, and various methods have been studied to address these problems. However, most attempts to solve the sparsity problem are not optimal because they can only be applied when additional data such as users' personal information, social networks, or characteristics of items are included. Another problem is that real-world score data are mostly biased to high scores, resulting in severe imbalances. One cause of this imbalance distribution is the purchasing bias, in which only users with high product ratings purchase products, so those with low ratings are less likely to purchase products and thus do not leave negative product reviews. Due to these characteristics, unlike most users' actual preferences, reviews by users who purchase products are more likely to be positive. Therefore, the actual rating data is over-learned in many classes with high incidence due to its biased characteristics, distorting the market. Applying collaborative filtering to these imbalanced data leads to poor recommendation performance due to excessive learning of biased classes. Traditional oversampling techniques to address this problem are likely to cause overfitting because they repeat the same data, which acts as noise in learning, reducing recommendation performance. In addition, pre-processing methods for most existing data imbalance problems are designed and used for binary classes. Binary class imbalance techniques are difficult to apply to multi-class problems because they cannot model multi-class problems, such as objects at cross-class boundaries or objects overlapping multiple classes. To solve this problem, research has been conducted to convert and apply multi-class problems to binary class problems. However, simplification of multi-class problems can cause potential classification errors when combined with the results of classifiers learned from other sub-problems, resulting in loss of important information about relationships beyond the selected items. Therefore, it is necessary to develop more effective methods to address multi-class imbalance problems. We propose a collaborative filtering model using CGAN to generate realistic virtual data to populate the empty user-item matrix. Conditional vector y identify distributions for minority classes and generate data reflecting their characteristics. Collaborative filtering then maximizes the performance of the recommendation system via hyperparameter tuning. This process should improve the accuracy of the model by addressing the sparsity problem of collaborative filtering implementations while mitigating data imbalances arising from real data. Our model has superior recommendation performance over existing oversampling techniques and existing real-world data with data sparsity. SMOTE, Borderline SMOTE, SVM-SMOTE, ADASYN, and GAN were used as comparative models and we demonstrate the highest prediction accuracy on the RMSE and MAE evaluation scales. Through this study, oversampling based on deep learning will be able to further refine the performance of recommendation systems using actual data and be used to build business recommendation systems.

Recommender system using BERT sentiment analysis (BERT 기반 감성분석을 이용한 추천시스템)

  • Park, Ho-yeon;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.2
    • /
    • pp.1-15
    • /
    • 2021
  • If it is difficult for us to make decisions, we ask for advice from friends or people around us. When we decide to buy products online, we read anonymous reviews and buy them. With the advent of the Data-driven era, IT technology's development is spilling out many data from individuals to objects. Companies or individuals have accumulated, processed, and analyzed such a large amount of data that they can now make decisions or execute directly using data that used to depend on experts. Nowadays, the recommender system plays a vital role in determining the user's preferences to purchase goods and uses a recommender system to induce clicks on web services (Facebook, Amazon, Netflix, Youtube). For example, Youtube's recommender system, which is used by 1 billion people worldwide every month, includes videos that users like, "like" and videos they watched. Recommended system research is deeply linked to practical business. Therefore, many researchers are interested in building better solutions. Recommender systems use the information obtained from their users to generate recommendations because the development of the provided recommender systems requires information on items that are likely to be preferred by the user. We began to trust patterns and rules derived from data rather than empirical intuition through the recommender systems. The capacity and development of data have led machine learning to develop deep learning. However, such recommender systems are not all solutions. Proceeding with the recommender systems, there should be no scarcity in all data and a sufficient amount. Also, it requires detailed information about the individual. The recommender systems work correctly when these conditions operate. The recommender systems become a complex problem for both consumers and sellers when the interaction log is insufficient. Because the seller's perspective needs to make recommendations at a personal level to the consumer and receive appropriate recommendations with reliable data from the consumer's perspective. In this paper, to improve the accuracy problem for "appropriate recommendation" to consumers, the recommender systems are proposed in combination with context-based deep learning. This research is to combine user-based data to create hybrid Recommender Systems. The hybrid approach developed is not a collaborative type of Recommender Systems, but a collaborative extension that integrates user data with deep learning. Customer review data were used for the data set. Consumers buy products in online shopping malls and then evaluate product reviews. Rating reviews are based on reviews from buyers who have already purchased, giving users confidence before purchasing the product. However, the recommendation system mainly uses scores or ratings rather than reviews to suggest items purchased by many users. In fact, consumer reviews include product opinions and user sentiment that will be spent on evaluation. By incorporating these parts into the study, this paper aims to improve the recommendation system. This study is an algorithm used when individuals have difficulty in selecting an item. Consumer reviews and record patterns made it possible to rely on recommendations appropriately. The algorithm implements a recommendation system through collaborative filtering. This study's predictive accuracy is measured by Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). Netflix is strategically using the referral system in its programs through competitions that reduce RMSE every year, making fair use of predictive accuracy. Research on hybrid recommender systems combining the NLP approach for personalization recommender systems, deep learning base, etc. has been increasing. Among NLP studies, sentiment analysis began to take shape in the mid-2000s as user review data increased. Sentiment analysis is a text classification task based on machine learning. The machine learning-based sentiment analysis has a disadvantage in that it is difficult to identify the review's information expression because it is challenging to consider the text's characteristics. In this study, we propose a deep learning recommender system that utilizes BERT's sentiment analysis by minimizing the disadvantages of machine learning. This study offers a deep learning recommender system that uses BERT's sentiment analysis by reducing the disadvantages of machine learning. The comparison model was performed through a recommender system based on Naive-CF(collaborative filtering), SVD(singular value decomposition)-CF, MF(matrix factorization)-CF, BPR-MF(Bayesian personalized ranking matrix factorization)-CF, LSTM, CNN-LSTM, GRU(Gated Recurrent Units). As a result of the experiment, the recommender system based on BERT was the best.

Evaluating of the Effectiveness of RTK Surveying Performance Based on Low-cost Multi-Channel GNSS Positioning Modules (다채널 저가 GNSS 측위 모듈기반 RTK 측량의 효용성 평가)

  • Kim, Chi-Hun;Oh, Seong-Jong;Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.52 no.2
    • /
    • pp.53-65
    • /
    • 2022
  • According to the advancement of the GNSS satellite positioning system, the module of hardware and operation software reflecting accuracy and economical efficiency is implemented in the user sector including the multi-channel GNSS receiver, the multi-frequency external antenna and the mobile app (App) base public positioning analysis software etc., and the multichannel GNSS RTK positioning of the active configuration method (DIY, Do it yourself) is possible according to the purpose of user. Especially, as the infrastructure of multi-GNSS satellite is expanded and the potential of expansion of utilization according to various modules is highlighted, interest in the utilization of multi-channel low-cost GNSS receiver module is gradually increasing. The purpose of this study is to review the multi-channel low-cost GNSS receivers that are appearing in the mass market in various forms and to analyze the utilization plan of the "address information facility investigation project" of the Ministry of Public Administration and Security by constructing the multi-channel low-cost GNSS positioning module based RTK survey system (hereinafter referred to as "multi-channel GNSS RTK module positioning system"). For this purpose, we constructed a low-cost "multi-channel GNSS RTK module positioning system" by combining related modules such as U-blox's F9P chipset, antenna, Ntrip transmission of GNSS observation data and RTK positioning analysis app through smartphone. Kinematic positioning was performed for circular trajectories, and static positioning was performed for address information facilities. The results of comparative analysis with the Static positioning performance of the geodetic receivers were obtained with 5 fixed points in the experimental site, and the good static surveying performance was obtained with the standard deviation of average ±1.2cm. In addition, the results of the test point for the outline of the circular structure in the orthogonal image composed of the drone image analysis and the Kinematic positioning trajectory of the low cost RTK GNSS receiver showed that the trajectory was very close to the standard deviation of average ±2.5cm. Especially, as a result of applying it to address information facilities, it was possible to verify the utility of spatial information construction at low cost compared to expensive commercial geodetic receivers, so it is expected that various utilization of "multi-channel GNSS RTK module positioning system"

Effects on the continuous use intention of AI-based voice assistant services: Focusing on the interaction between trust in AI and privacy concerns (인공지능 기반 음성비서 서비스의 지속이용 의도에 미치는 영향: 인공지능에 대한 신뢰와 프라이버시 염려의 상호작용을 중심으로)

  • Jang, Changki;Heo, Deokwon;Sung, WookJoon
    • Informatization Policy
    • /
    • v.30 no.2
    • /
    • pp.22-45
    • /
    • 2023
  • In research on the use of AI-based voice assistant services, problems related to the user's trust and privacy protection arising from the experience of service use are constantly being raised. The purpose of this study was to investigate empirically the effects of individual trust in AI and online privacy concerns on the continued use of AI-based voice assistants, specifically the impact of their interaction. In this study, question items were constructed based on previous studies, with an online survey conducted among 405 respondents. The effect of the user's trust in AI and privacy concerns on the adoption and continuous use intention of AI-based voice assistant services was analyzed using the Heckman selection model. As the main findings of the study, first, AI-based voice assistant service usage behavior was positively influenced by factors that promote technology acceptance, such as perceived usefulness, perceived ease of use, and social influence. Second, trust in AI had no statistically significant effect on AI-based voice assistant service usage behavior but had a positive effect on continuous use intention. Third, the privacy concern level was confirmed to have the effect of suppressing continuous use intention through interaction with trust in AI. These research results suggest the need to strengthen user experience through user opinion collection and action to improve trust in technology and alleviate users' concerns about privacy as governance for realizing digital government. When introducing artificial intelligence-based policy services, it is necessary to disclose transparently the scope of application of artificial intelligence technology through a public deliberation process, and the development of a system that can track and evaluate privacy issues ex-post and an algorithm that considers privacy protection is required.

A Study on the Effect of User Value on Smartwatch Digital HealthcareAcceptance Intention to Promote Digital Healthcare Venture Start Up (Digital Healthcare 벤처창업 촉진을 위한, 사용자 가치가 Smartwatch Digital Healthcare 수용의도에 미치는 영향 연구)

  • Eekseong Jin;soyoung Lee
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.2
    • /
    • pp.35-52
    • /
    • 2023
  • Recently, as the non-face-to-face environment has developed due to COVID-19 and environmental pollution, the importance of online digital healthcare is increasing, and venture start-ups and activities such as health care, telemedicine, and digital treatments are also actively underway. This study conducted the impact on the acceptability of digital healthcare smartwatches with an integrated approach of the expanded integrated technology acceptance model (UTAUT2) and the behavioral inference model (BRT). The most advanced integrated technology acceptance model for innovative technology acceptance research was used to identify major factors such as utility expectations, social effects, convenience, price barriers, lack of alternatives, and behavioral intentions. For the study, about 410 responses from ordinary people in their teens to 60s across the country were collected, and based on this, the hypothesis was verified using structural equations after testing reliability and validity of the data. SPSS 23 and AMOS 23 were used for research analysis. Studies have shown that personal innovation has a significant impact on the reasons for acceptance (use value, social impact, convenience of use), attitude, and non-use (price barriers, lack of alternatives, and barriers to use). These results are the same as the results of previous studies that confirmed the influence of the main value of innovative ICT on user acceptance intention. In addition, the reason for acceptance had a significant effect on attitude, but the effect of the reason for non-acceptance was not significant. It can be analyzed that consumers are interested in new ICT products and new services, but purchase them more carefully and selectively. This study has evolved from the acceptance analysis of general-purpose consumer innovation technology to the acceptance analysis of consumer value in smartwatch digital healthcare, which is a new and important area in the future. Industrially, it can contribute to the product's purchase and marketing. It is hoped that this study will contribute to increasing research in the digital healthcare sector, which will play an important role in our lives in the future, and that it will develop into in-depth factors that are more suitable for consumer value through integrated approach models and integrated analysis of consumer acceptance and non-acceptance.

  • PDF

Patterns in the Use and Perception of Digital Breast Tomosynthesis: A Survey of Korean Breast Radiologists (디지털 유방 토모신테시스에 대한 국내 사용 현황과 인식에 관한 설문조사 연구)

  • Eun Young Chae;Joo Hee Cha;Hee Jung Shin;Woo Jung Choi;Jihye Kim;Sun Mi Kim;Hak Hee Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.6
    • /
    • pp.1327-1341
    • /
    • 2022
  • Purpose To evaluate the pattern of use and the perception of digital breast tomosynthesis (DBT) among Korean breast radiologists. Materials and Methods From March 22 to 29, 2021, an online survey comprising 27 questions was sent to members of the Korean Society of Breast Imaging. Questions related to practice characteristics, utilization and perception of DBT, and research interests. Results were analyzed based on factors using logistic regression. Results Overall, 120 of 257 members responded to the survey (response rate, 46.7%), 67 (55.8%) of whom reported using DBT. The overall satisfaction with DBT was 3.31 (1-5 scale). The most-cited DBT advantages were decreased recall rate (55.8%), increased lesion conspicuity (48.3%), and increased cancer detection (45.8%). The most-cited DBT disadvantages were extra cost for patients (46.7%), insufficient calcification characterization (43.3%), insufficient improvement in diagnostic performance (39.2%), and radiation dose (35.8%). Radiologists reported increased storage requirements and interpretation time for barriers to implementing DBT. Conclusion Further improvement of DBT techniques reflecting feedback from the user's perspective will help increase the acceptance of DBT in Korea.