• 제목/요약/키워드: 사용자서비스

Search Result 11,471, Processing Time 0.042 seconds

Personalized Recommendation System for IPTV using Ontology and K-medoids (IPTV환경에서 온톨로지와 k-medoids기법을 이용한 개인화 시스템)

  • Yun, Byeong-Dae;Kim, Jong-Woo;Cho, Yong-Seok;Kang, Sang-Gil
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.3
    • /
    • pp.147-161
    • /
    • 2010
  • As broadcasting and communication are converged recently, communication is jointed to TV. TV viewing has brought about many changes. The IPTV (Internet Protocol Television) provides information service, movie contents, broadcast, etc. through internet with live programs + VOD (Video on demand) jointed. Using communication network, it becomes an issue of new business. In addition, new technical issues have been created by imaging technology for the service, networking technology without video cuts, security technologies to protect copyright, etc. Through this IPTV network, users can watch their desired programs when they want. However, IPTV has difficulties in search approach, menu approach, or finding programs. Menu approach spends a lot of time in approaching programs desired. Search approach can't be found when title, genre, name of actors, etc. are not known. In addition, inserting letters through remote control have problems. However, the bigger problem is that many times users are not usually ware of the services they use. Thus, to resolve difficulties when selecting VOD service in IPTV, a personalized service is recommended, which enhance users' satisfaction and use your time, efficiently. This paper provides appropriate programs which are fit to individuals not to save time in order to solve IPTV's shortcomings through filtering and recommendation-related system. The proposed recommendation system collects TV program information, the user's preferred program genres and detailed genre, channel, watching program, and information on viewing time based on individual records of watching IPTV. To look for these kinds of similarities, similarities can be compared by using ontology for TV programs. The reason to use these is because the distance of program can be measured by the similarity comparison. TV program ontology we are using is one extracted from TV-Anytime metadata which represents semantic nature. Also, ontology expresses the contents and features in figures. Through world net, vocabulary similarity is determined. All the words described on the programs are expanded into upper and lower classes for word similarity decision. The average of described key words was measured. The criterion of distance calculated ties similar programs through K-medoids dividing method. K-medoids dividing method is a dividing way to divide classified groups into ones with similar characteristics. This K-medoids method sets K-unit representative objects. Here, distance from representative object sets temporary distance and colonize it. Through algorithm, when the initial n-unit objects are tried to be divided into K-units. The optimal object must be found through repeated trials after selecting representative object temporarily. Through this course, similar programs must be colonized. Selecting programs through group analysis, weight should be given to the recommendation. The way to provide weight with recommendation is as the follows. When each group recommends programs, similar programs near representative objects will be recommended to users. The formula to calculate the distance is same as measure similar distance. It will be a basic figure which determines the rankings of recommended programs. Weight is used to calculate the number of watching lists. As the more programs are, the higher weight will be loaded. This is defined as cluster weight. Through this, sub-TV programs which are representative of the groups must be selected. The final TV programs ranks must be determined. However, the group-representative TV programs include errors. Therefore, weights must be added to TV program viewing preference. They must determine the finalranks.Based on this, our customers prefer proposed to recommend contents. So, based on the proposed method this paper suggested, experiment was carried out in controlled environment. Through experiment, the superiority of the proposed method is shown, compared to existing ways.

Magnetic Properties of Electroless Co-Mn-P Alloy Deposits (무전해 Co-Mn-P 합금 도금층의 자기적 특성)

  • Yun, Seong-Ryeol;Han, Seung-Hui;Kim, Chang-Uk
    • Korean Journal of Materials Research
    • /
    • v.9 no.3
    • /
    • pp.274-281
    • /
    • 1999
  • Usually sputtering and electroless plating methods were used for manufacturing metal-alloy thin film magnetic memory devices. Since electroless plating method has many merits in mass production and product variety com­pared to sputtering method, many researches about electroless plating have been performed in the United State of America and Japan. However, electroless plating method has not been studied frequently in Korea. In these respects the purpose of this research is manufacturing Co-Mn-P alloy thin film on the corning glass 2948 by electroless plating method using sodium hypophosphite as a reductant, and analyzing deposition rate, alloy composition, microstructure, and magnetic characteristics at various pH's and temperatures. For Co-P alloy thin film, the reductive deposition reaction 0$\alpha$urred only in basic condition, not in acidic condition. The deposition rate increased as the pH and temperature increased, and the optimum condition was found at the pH of 10 and the temperature of $80^{\circ}C$. Also magnetic charac­teristics was found to be most excellent at the pH of 9 and the temperature of $70^{\circ}C$, resulting in the coercive force of 8700e and the squareness of 0.78. At this condition, the contents of P was 2.54% and the thickness of the film was $0.216\mu\textrm{m}$. For crystal orientation, we could not observe fcc for $\beta$-Co. On the other hand,(1010), (0002), (1011) orientation of hcp for a-Co was observed. We could confirm the formation of longitudinal magnetization from dominant (1010) and (1011) orientation of Co-P alloy. For Co-Mn-P alloy deposition, coercive force was about 1000e more than that of Co P alloy, but squareness had no difference. For crystal orientation, (l01O) and (lOll) orientation of $\alpha$-Co was dominant as same as that of Co- P alloy. Likewise we could confirm the formation of longitudinal magnetization.

  • PDF

The Effects of LBS Information Filtering on Users' Perceived Uncertainty and Information Search Behavior (위치기반 서비스를 통한 정보 필터링이 사용자의 불확실성과 정보탐색 행동에 미치는 영향)

  • Zhai, Xiaolin;Im, Il
    • Asia pacific journal of information systems
    • /
    • v.24 no.4
    • /
    • pp.493-513
    • /
    • 2014
  • With the development of related technologies, Location-Based Services (LBS) are growing fast and being used in many ways. Past LBS studies have focused on adoption of LBS because of the fact that LBS users have privacy concerns regarding revealing their location information. Meanwhile, the number of LBS users and revenues from LBS are growing rapidly because users can get some benefits by revealing their location information. Little research has been done on how LBS affects consumers' information search behavior in product purchase. The purpose of this paper is examining the effect of LBS information filtering on buyers' uncertainty and their information search behavior. When consumers purchase a product, they try to reduce uncertainty by searching information. Generally, there are two types of uncertainties - knowledge uncertainty and choice uncertainty. Knowledge uncertainty refers to the lack of information on what kinds of alternatives are available in the market and/or their important attributes. Therefore, consumers having knowledge uncertainty will have difficulties in identifying what alternatives exist in the market to fulfil their needs. Choice uncertainty refers to the lack of information about consumers' own preferences and which alternative will fit in their needs. Therefore, consumers with choice uncertainty have difficulties selecting best product among available alternatives.. According to economics of information theory, consumers narrow the scope of information search when knowledge uncertainty is high. It is because consumers' information search cost is high when their knowledge uncertainty is high. If people do not know available alternatives and their attributes, it takes time and cognitive efforts for them to acquire information about available alternatives. Therefore, they will reduce search breadth. For people with high knowledge uncertainty, the information about products and their attributes is new and of high value for them. Therefore, they will conduct searches more in-depth because they have incentive to acquire more information. When people have high choice uncertainty, people tend to search information about more alternatives. It is because increased search breadth will improve their chances to find better alternative for them. On the other hand, since human's cognitive capacity is limited, the increased search breadth (more alternatives) will reduce the depth of information search for each alternative. Consumers with high choice uncertainty will spend less time and effort for each alternative because considering more alternatives will increase their utility. LBS provides users with the capability to screen alternatives based on the distance from them, which reduces information search costs. Therefore, it is expected that LBS will help users consider more alternatives even when they have high knowledge uncertainty. LBS provides distance information, which helps users choose alternatives appropriate for them. Therefore, users will perceive lower choice uncertainty when they use LBS. In order to test the hypotheses, we selected 80 students and assigned them to one of the two experiment groups. One group was asked to use LBS to search surrounding restaurants and the other group was asked to not use LBS to search nearby restaurants. The experimental tasks and measures items were validated in a pilot experiment. The final measurement items are shown in Appendix A. Each subject was asked to read one of the two scenarios - with or without LBS - and use a smartphone application to pick a restaurant. All behaviors on smartphone were recorded using a recording application. Search breadth was measured by the number of restaurants clicked by each subject. Search depths was measured by two metrics - the average number of sub-level pages each subject visited and the average time spent on each restaurant. The hypotheses were tested using SPSS and PLS. The results show that knowledge uncertainty reduces search breadth (H1a). However, there was no significant correlation between knowledge uncertainty and search depth (H1b). Choice uncertainty significantly reduces search depth (H2b), but no significant relationship was found between choice uncertainty and search breadth (H2a). LBS information filtering significantly reduces the buyers' choice uncertainty (H4) and reduces the negative relationship between knowledge uncertainty and search breadth (H3). This research provides some important implications for service providers. Service providers should use different strategies based on their service properties. For those service providers who are not well-known to consumers (high knowledge uncertainty) should encourage their customers to use LBS. This is because LBS would increase buyers' consideration sets when the knowledge uncertainty is high. Therefore, less known services have chances to be included in consumers' consideration sets with LBS. On the other hand, LBS information filtering decrease choice uncertainty and the near service providers are more likely to be selected than without LBS. Hence, service providers should analyze geographically approximate competitors' strength and try to reduce the gap so that they can have chances to be included in the consideration set.

A Semantic Classification Model for e-Catalogs (전자 카탈로그를 위한 의미적 분류 모형)

  • Kim Dongkyu;Lee Sang-goo;Chun Jonghoon;Choi Dong-Hoon
    • Journal of KIISE:Databases
    • /
    • v.33 no.1
    • /
    • pp.102-116
    • /
    • 2006
  • Electronic catalogs (or e-catalogs) hold information about the goods and services offered or requested by the participants, and consequently, form the basis of an e-commerce transaction. Catalog management is complicated by a number of factors and product classification is at the core of these issues. Classification hierarchy is used for spend analysis, custom3 regulation, and product identification. Classification is the foundation on which product databases are designed, and plays a central role in almost all aspects of management and use of product information. However, product classification has received little formal treatment in terms of underlying model, operations, and semantics. We believe that the lack of a logical model for classification Introduces a number of problems not only for the classification itself but also for the product database in general. It needs to meet diverse user views to support efficient and convenient use of product information. It needs to be changed and evolved very often without breaking consistency in the cases of introduction of new products, extinction of existing products, class reorganization, and class specialization. It also needs to be merged and mapped with other classification schemes without information loss when B2B transactions occur. For these requirements, a classification scheme should be so dynamic that it takes in them within right time and cost. The existing classification schemes widely used today such as UNSPSC and eClass, however, have a lot of limitations to meet these requirements for dynamic features of classification. In this paper, we try to understand what it means to classify products and present how best to represent classification schemes so as to capture the semantics behind the classifications and facilitate mappings between them. Product information implies a plenty of semantics such as class attributes like material, time, place, etc., and integrity constraints. In this paper, we analyze the dynamic features of product databases and the limitation of existing code based classification schemes. And describe the semantic classification model, which satisfies the requirements for dynamic features oi product databases. It provides a means to explicitly and formally express more semantics for product classes and organizes class relationships into a graph. We believe the model proposed in this paper satisfies the requirements and challenges that have been raised by previous works.

The Relationship between Internet Search Volumes and Stock Price Changes: An Empirical Study on KOSDAQ Market (개별 기업에 대한 인터넷 검색량과 주가변동성의 관계: 국내 코스닥시장에서의 산업별 실증분석)

  • Jeon, Saemi;Chung, Yeojin;Lee, Dongyoup
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.2
    • /
    • pp.81-96
    • /
    • 2016
  • As the internet has become widespread and easy to access everywhere, it is common for people to search information via online search engines such as Google and Naver in everyday life. Recent studies have used online search volume of specific keyword as a measure of the internet users' attention in order to predict disease outbreaks such as flu and cancer, an unemployment rate, and an index of a nation's economic condition, and etc. For stock traders, web search is also one of major information resources to obtain data about individual stock items. Therefore, search volume of a stock item can reflect the amount of investors' attention on it. The investor attention has been regarded as a crucial factor influencing on stock price but it has been measured by indirect proxies such as market capitalization, trading volume, advertising expense, and etc. It has been theoretically and empirically proved that an increase of investors' attention on a stock item brings temporary increase of the stock price and the price recovers in the long run. Recent development of internet environment enables to measure the investor attention directly by the internet search volume of individual stock item, which has been used to show the attention-induced price pressure. Previous studies focus mainly on Dow Jones and NASDAQ market in the United States. In this paper, we investigate the relationship between the individual investors' attention measured by the internet search volumes and stock price changes of individual stock items in the KOSDAQ market in Korea, where the proportion of the trades by individual investors are about 90% of the total. In addition, we examine the difference between industries in the influence of investors' attention on stock return. The internet search volume of stocks were gathered from "Naver Trend" service weekly between January 2007 and June 2015. The regression model with the error term with AR(1) covariance structure is used to analyze the data since the weekly prices in a stock item are systematically correlated. The market capitalization, trading volume, the increment of trading volume, and the month in which each trade occurs are included in the model as control variables. The fitted model shows that an abnormal increase of search volume of a stock item has a positive influence on the stock return and the amount of the influence varies among the industry. The stock items in IT software, construction, and distribution industries have shown to be more influenced by the abnormally large internet search volume than the average across the industries. On the other hand, the stock items in IT hardware, manufacturing, entertainment, finance, and communication industries are less influenced by the abnormal search volume than the average. In order to verify price pressure caused by investors' attention in KOSDAQ, the stock return of the current week is modelled using the abnormal search volume observed one to four weeks ahead. On average, the abnormally large increment of the search volume increased the stock return of the current week and one week later, and it decreased the stock return in two and three weeks later. There is no significant relationship with the stock return after 4 weeks. This relationship differs among the industries. An abnormal search volume brings particularly severe price reversal on the stocks in the IT software industry, which are often to be targets of irrational investments by individual investors. An abnormal search volume caused less severe price reversal on the stocks in the manufacturing and IT hardware industries than on average across the industries. The price reversal was not observed in the communication, finance, entertainment, and transportation industries, which are known to be influenced largely by macro-economic factors such as oil price and currency exchange rate. The result of this study can be utilized to construct an intelligent trading system based on the big data gathered from web search engines, social network services, and internet communities. Particularly, the difference of price reversal effect between industries may provide useful information to make a portfolio and build an investment strategy.

Introduction on the Products and the Quality Management Plans for GOCI-II (천리안 해양위성 2호 산출물 및 품질관리 계획)

  • Lee, Sun-Ju;Lee, Kyeong-Sang;Han, Tae Hyun;Moon, Jeong-Eon;Bae, Sujung;Choi, Jong-kuk
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1245-1257
    • /
    • 2021
  • GOCI-II, succeeding the mission of GOCI, was launched in February 2020 and has been in regular operation since October 2020. Korea Institute of Ocean Science and Technology (KIOST) processes and produces in real time Level-1B and 26 Level-2 outputs, which then are provided by Korea Hydrographic and Oceanographic Agency (KHOA). We introduced current status of regular GOCI-II operation and showed future improvement. Basic GOCI-II products including chlorophyll-a, total suspended materials, and colored dissolved organic matter concentration, are induced by OC4 and YOC algorithms, which were described in detail. For the full disk (FD), imaging schedule was established considering solar zenith angle and sun glint during the in-orbital test, but improved by further considering satellite zenith angle. The number of slots satisfying the condition 'Best Ocean' significantly increased from 15 to 78. GOCI-II calibration requirements were presented based on that by European Space Agency (ESA) and candidate fixed locations for calibrating local observation area were. The quality management of FD uses research ships and overseas bases of KIOST, but it is necessary to establish an international calibration/validation network. These results are expected to enhance the understanding of users for output processing and help establish detailed plans for future quality management tasks.

Multi-Category Sentiment Analysis for Social Opinion Related to Artificial Intelligence on Social Media (소셜 미디어 상에서의 인공지능 관련 사회적 여론에 대한 다 범주 감성 분석)

  • Lee, Sang Won;Choi, Chang Wook;Kim, Dong Sung;Yeo, Woon Young;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.51-66
    • /
    • 2018
  • As AI (Artificial Intelligence) technologies have been swiftly evolved, a lot of products and services are under development in various fields for better users' experience. On this technology advance, negative effects of AI technologies also have been discussed actively while there exists positive expectation on them at the same time. For instance, many social issues such as trolley dilemma and system security issues are being debated, whereas autonomous vehicles based on artificial intelligence have had attention in terms of stability increase. Therefore, it needs to check and analyse major social issues on artificial intelligence for their development and societal acceptance. In this paper, multi-categorical sentiment analysis is conducted over online public opinion on artificial intelligence after identifying the trending topics related to artificial intelligence for two years from January 2016 to December 2017, which include the event, match between Lee Sedol and AlphaGo. Using the largest web portal in South Korea, online news, news headlines and news comments were crawled. Considering the importance of trending topics, online public opinion was analysed into seven multiple sentimental categories comprised of anger, dislike, fear, happiness, neutrality, sadness, and surprise by topics, not only two simple positive or negative sentiment. As a result, it was found that the top sentiment is "happiness" in most events and yet sentiments on each keyword are different. In addition, when the research period was divided into four periods, the first half of 2016, the second half of the year, the first half of 2017, and the second half of the year, it is confirmed that the sentiment of 'anger' decreases as goes by time. Based on the results of this analysis, it is possible to grasp various topics and trends currently discussed on artificial intelligence, and it can be used to prepare countermeasures. We hope that we can improve to measure public opinion more precisely in the future by integrating empathy level of news comments.

Knowledge Extraction Methodology and Framework from Wikipedia Articles for Construction of Knowledge-Base (지식베이스 구축을 위한 한국어 위키피디아의 학습 기반 지식추출 방법론 및 플랫폼 연구)

  • Kim, JaeHun;Lee, Myungjin
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.43-61
    • /
    • 2019
  • Development of technologies in artificial intelligence has been rapidly increasing with the Fourth Industrial Revolution, and researches related to AI have been actively conducted in a variety of fields such as autonomous vehicles, natural language processing, and robotics. These researches have been focused on solving cognitive problems such as learning and problem solving related to human intelligence from the 1950s. The field of artificial intelligence has achieved more technological advance than ever, due to recent interest in technology and research on various algorithms. The knowledge-based system is a sub-domain of artificial intelligence, and it aims to enable artificial intelligence agents to make decisions by using machine-readable and processible knowledge constructed from complex and informal human knowledge and rules in various fields. A knowledge base is used to optimize information collection, organization, and retrieval, and recently it is used with statistical artificial intelligence such as machine learning. Recently, the purpose of the knowledge base is to express, publish, and share knowledge on the web by describing and connecting web resources such as pages and data. These knowledge bases are used for intelligent processing in various fields of artificial intelligence such as question answering system of the smart speaker. However, building a useful knowledge base is a time-consuming task and still requires a lot of effort of the experts. In recent years, many kinds of research and technologies of knowledge based artificial intelligence use DBpedia that is one of the biggest knowledge base aiming to extract structured content from the various information of Wikipedia. DBpedia contains various information extracted from Wikipedia such as a title, categories, and links, but the most useful knowledge is from infobox of Wikipedia that presents a summary of some unifying aspect created by users. These knowledge are created by the mapping rule between infobox structures and DBpedia ontology schema defined in DBpedia Extraction Framework. In this way, DBpedia can expect high reliability in terms of accuracy of knowledge by using the method of generating knowledge from semi-structured infobox data created by users. However, since only about 50% of all wiki pages contain infobox in Korean Wikipedia, DBpedia has limitations in term of knowledge scalability. This paper proposes a method to extract knowledge from text documents according to the ontology schema using machine learning. In order to demonstrate the appropriateness of this method, we explain a knowledge extraction model according to the DBpedia ontology schema by learning Wikipedia infoboxes. Our knowledge extraction model consists of three steps, document classification as ontology classes, proper sentence classification to extract triples, and value selection and transformation into RDF triple structure. The structure of Wikipedia infobox are defined as infobox templates that provide standardized information across related articles, and DBpedia ontology schema can be mapped these infobox templates. Based on these mapping relations, we classify the input document according to infobox categories which means ontology classes. After determining the classification of the input document, we classify the appropriate sentence according to attributes belonging to the classification. Finally, we extract knowledge from sentences that are classified as appropriate, and we convert knowledge into a form of triples. In order to train models, we generated training data set from Wikipedia dump using a method to add BIO tags to sentences, so we trained about 200 classes and about 2,500 relations for extracting knowledge. Furthermore, we evaluated comparative experiments of CRF and Bi-LSTM-CRF for the knowledge extraction process. Through this proposed process, it is possible to utilize structured knowledge by extracting knowledge according to the ontology schema from text documents. In addition, this methodology can significantly reduce the effort of the experts to construct instances according to the ontology schema.

Design and Implementation of Transmission Scheduler for Terrestrial UHD Contents (지상파 UHD 콘텐츠 전송 스케줄러 설계 및 구현)

  • Paik, Jong-Ho;Seo, Minjae;Yu, Kyung-A
    • Journal of Broadcast Engineering
    • /
    • v.24 no.1
    • /
    • pp.118-131
    • /
    • 2019
  • In order to provide 8K UHD contents of terrestrial broadcasting with a large capacity, the terrestrial broadcasting system has various problems such as limited bandwidth and so on. To solve these problems, UHD contents transmission technology has been actively studied, and an 8K UHD broadcasting system using terrestrial broadcasting network and communication network has been proposed. The proposed technique is to solve the limited bandwidth problem of terrestrial broadcasting network by segmenting 8K UHD contents and transmitting them to heterogeneous networks through hierarchical separation. Through the terrestrial broadcasting network, the base layer corresponding to FHD and the additional enhancement layer data for 4K UHD are transmitted, and the additional enhancement layer data corresponding to 8K UHD is transmitted through the communication network. When 8K UHD contents are provided in such a way, user can receive up to 4K UHD broadcasting by terrestrial channels, and also can receive up to 8K UHD additional communication networks. However, in order to transmit the 4K UHD contents within the allocated bit rate of the domestic terrestrial UHD broadcasting, the compression rate is increased, so a certain level of image deterioration occurs inevitably. Due to the nature of UHD contents, video quality should be considered as a top priority over other factors, so that video quality should be guaranteed even within a limited bit rate. This requires packet scheduling of content generators in the broadcasting system. Since the multiplexer sends out the packets received from the content generator in order, it is very important to make the transmission time and the transmission rate of the process from the content generator to the multiplexer constant and accurate. Therefore, we propose a variable transmission scheduler between the content generator and the multiplexer to guarantee the image quality of a certain level of UHD contents in this paper.

Characteristics of User's Behavior across Generations for space planing in General Hospital (종합병원 환경계획을 위한 세대별 종합병원 이용행태 특성분석)

  • Park, Hey Kyung;Oh, Ji Young
    • Korea Science and Art Forum
    • /
    • v.28
    • /
    • pp.105-116
    • /
    • 2017
  • This study is a basic research to suggest user-centered general hospital environmental design guidelines, which aims to analyze user's behavior characteristics across generation in general hospital. For this purpose, this study constructed an analysis tool through the literature review with regard to generation and behavior characteristics in general hospital. Besides, an online survey regarding user's behavior in general hospital was conducted targeting from 20s to 60s, 300 persons for each group, total 1,500 persons for about 3 weeks since September 1, 2016. The results of this study are as follows: (1) Based on the generation, there were significant differences in relevant categories of their visiting frequency, visiting purpose, visiting hour, transportation, companion, behavior during the wait and selection of a general hospital. (2) In all generation, they responded that they have visited once or twice per year. People in 20s and 30s responded that their visit for the hospital is to receive specific treatment, while other people in 40s, 50s and 60s visit the hospital majorly for routine check-ups. Therefore, it is imperative for a health check-up center to design an environmental plan that reflects the characteristics of elders in 40s, 50s and 60s. (3) People in 40s, 50s and 60s usually visit a general hospital in the mornings of weekdays, while generations in 20s and 30s responded that they mostly visit the hospital in the mornings of weekend. (4) When they visit a general hospital, people in their 20s are usually using public transportations, while people in their 30s to 60s are using their own vehicle. (5) People in their 20s majorly visited 'lobby'. In older generations, they tend to visit 'outpatient clinic'. Therefore, it is necessary to build an outpatient clinic environment that considers the elderly. (6) Patients majorly responded that they are using their cell phone, while waiting for their clinic call. In elder generations, they responded that they are more likely watching TVs, reading books/magazines or doing nothing. Therefore, it is essential to provide cell-phone related services and environmental supports. Visually attractive media can be utilized for this purpose.