• Title/Summary/Keyword: 사용수명예측

Search Result 496, Processing Time 0.031 seconds

Measuremets of Hydroperoxides with Automated Collection and HPLC Analysis (자동화된 포집과 HPLC 분석 자동시스템을 이용한 과산화수소의 측정)

  • 김영미;배성연;이미혜
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.11a
    • /
    • pp.237-238
    • /
    • 2002
  • 과산화수소는 광화학적 이차 생성물질이며 대기의 산화상태를 알려주는 지시자의 역할을 한다. H2O2 는 O3의 광분해로 시작되는 광화학 반응 중 HO2 radical 의 self reaction(HO2+ HO2+M$\longrightarrow$H2O2+M)으로 주로 생성된다(Lee,2000). 대기 내 수명이 1-2일인 과산화수소를 측정하므로써 오존의 대표적인 전구물질인 NOx와 VOC를 산화시키는 OH, HO2 라디칼의 농도를 예측할 수 있고 궁극적으로 오존을 저감하는 대책을 세우는데 필요한 요인으로 사용된다. (중략)

  • PDF

Prediction of Expected Residual Useful Life of Rubble-Mound Breakwaters Using Stochastic Gamma Process (추계학적 감마 확률과정을 이용한 경사제의 기대 잔류유효수명 예측)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.3
    • /
    • pp.158-169
    • /
    • 2019
  • A probabilistic model that can predict the residual useful lifetime of structure is formulated by using the gamma process which is one of the stochastic processes. The formulated stochastic model can take into account both the sampling uncertainty associated with damages measured up to now and the temporal uncertainty of cumulative damage over time. A method estimating several parameters of stochastic model is additionally proposed by introducing of the least square method and the method of moments, so that the age of a structure, the operational environment, and the evolution of damage with time can be considered. Some features related to the residual useful lifetime are firstly investigated into through the sensitivity analysis on parameters under a simple setting of single damage data measured at the current age. The stochastic model are then applied to the rubble-mound breakwater straightforwardly. The parameters of gamma process can be estimated for several experimental data on the damage processes of armor rocks of rubble-mound breakwater. The expected damage levels over time, which are numerically simulated with the estimated parameters, are in very good agreement with those from the flume testing. It has been found from various numerical calculations that the probabilities exceeding the failure limit are converged to the constraint that the model must be satisfied after lasting for a long time from now. Meanwhile, the expected residual useful lifetimes evaluated from the failure probabilities are seen to be different with respect to the behavior of damage history. As the coefficient of variation of cumulative damage is becoming large, in particular, it has been shown that the expected residual useful lifetimes have significant discrepancies from those of the deterministic regression model. This is mainly due to the effect of sampling and temporal uncertainties associated with damage, by which the first time to failure tends to be widely distributed. Therefore, the stochastic model presented in this paper for predicting the residual useful lifetime of structure can properly implement the probabilistic assessment on current damage state of structure as well as take account of the temporal uncertainty of future cumulative damage.

Reliability Assessment of Low-Power Processor Packages for Supercomputers (슈퍼컴퓨터에 사용되는 저전력 프로세서 패키지의 신뢰성 평가)

  • Park, Ju-Young;Kwon, Daeil;Nam, Dukyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.2
    • /
    • pp.37-42
    • /
    • 2016
  • While datacenter operation cost increases with electricity price rise, many researchers study low-power processor based supercomputers to reduce power consumption of datacenters. Reliability of low-power processors for supercomputers can be of concern since the reliability of many low-power processors are assessed based on mobile use conditions. This paper assessed the reliability of low-power processor packages based on supercomputer use conditions. Temperature cycling was determined as a critical failure cause of low-power processor packages through literature surveys and failure mode, effect and criticality analysis. The package temperature was measured at multiple processor load conditions to examine the relationship between processor load and package temperature. A physics-of-failure reliability model associated with temperature cycling predicted the expected lifetime of low-power processors to be less than 3 years. Recommendations to improve the lifetime of low-power processors were presented based on the experimental results.

Test Standard for Reliability of Automotive Semiconductors: AEC-Q100 (자동차 반도체의 신뢰성 테스트 표준: AEC-Q100)

  • Lee, Seongsoo
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.578-583
    • /
    • 2021
  • This paper describes acceleration tests for reliability of semiconductors. It also describes AEC-Q100, international test standard for reliability of automotive semiconductors. Semiconductors can be used for dozens of years. So acceleration tests are essential to test potential problems over whole period of product where test time is minimized by applying intensive stresses. AEC-Q100 is a typical acceleration test in automotive semiconductors, and it is designed to find various failures in semiconductors and to analyze their causes of occurance. So it finds many problems in design and fabrication as well as it predicts lifetime and reliability of semiconductors. AEC-Q100 consists of 7 test groups such as accelerated environmental stress tests, accelerated lifetime simulation tests, package assembly integrity tests, die fabrication reliability tests, electrical verification tests, defect screening tests, and cavity package integrity tests. It has 4 grades from grade 0 to grade 3 based on operational temperature. AEC-Q101, Q102, Q103, Q104, and Q200 are applied to discrete semiconductors, optoelectronic semiconductors, sensors, multichip modules, and passive components, respectively.

Orbital Lifetime Analysis of Space Objects (우주물체 궤도수명 분석)

  • Seong, Jae-Dong;Kim, Hae-Dong
    • Aerospace Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.184-192
    • /
    • 2014
  • In this paper, the lifetime of the artificial space objects in the LEO is analysed by using TLE data, which is provided by JSpOC. We observed the change of the number of space objects from 1957 and determined the reason of space debris generation. And then, we performed the analysis about present condition of space debris environment. The lifetime analysis includes a total of 11,792 artificial space objects and performed until the year 2050 by orbit propagation. We analyze the annual reentry frequency for the high RCS objects such as nonoperational satellites and rocket bodies, which have the possibility of earth ground impact through STK/Lifetime Tool for accurate and effective calculation. The results show that 9 payloads or rocket bodies will be decayed annually and 2 or 3 objects of total value have the possibility of ground impact. In addition, it is also shown that the 40% of a total analysed objects have the lifetime over 200 years.

Fatigue Test and Evaluation of Landing Gear (착륙장치 피로 시험평가)

  • Lee, Sang-Wook;Lee, Seung-Gyu;Shin, Jeong-Woo;Kim, Tae-Uk;Kim, Sung-Chan;Hwang, In-Hee;Lee, Je-Dong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1181-1187
    • /
    • 2012
  • For the fatigue design of aircraft landing gear, the safe-life approach is applied. Structural defects such as cracks or detrimental deformations should not occur under the fatigue load spectrum depicting the entire lifetime usage of the aircraft. In the design phase, the fatigue life of the landing gear is estimated analytically by adopting the stress-based approach because the fatigue of aircraft landing gear is generally high-cycle fatigue. This utilizes S-N curves that are factored to produce design curves that account for the scatter and surface finish of the material. In the test and evaluation phases, a fatigue test should be conducted for full-scale landing gear to substantiate the fatigue design requirement in the end. In this study, the procedure for the fatigue test and evaluation of aircraft landing gear is presented with real application cases.

Service Life Prediction and Carbonation of Bridge Structures according to Environmental Conditions (환경 조건에 따른 교량구조물의 탄산화 현황 및 내구수명 예측)

  • Kim, Hun-Kyom;Kim, Sung-Bo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.126-132
    • /
    • 2010
  • Carbonation is the results of the interaction of carbon dioxide gas in the atmosphere with the alkaline hydroxides in the concrete. Reinforced steel corrosion due to concrete carbonation is one of main factors on the decrease in durability of RC structure. This study investigates the influence of carbonation on the bridges under various environment condition and quantifies the effect of carbonation various domestic field data. The failure probability of durability is evaluated on the basis of reliability concept. In addition, service life of the structures is predicted based on the intended probability of durable failure in domestic concrete specification. According to experimental results of the carbonation depth, the carbonation depth increased with structural age. It is analyzed that carbonation velocity of the structures under urban area and sea condition is 1.6-1.9 times faster than the river condition. Service life of the bridges under urban area and sea condition is decreased about 2.4-3.3 times than river condition.

Measurement System for Vehicle Electric Power using LabVIEW (LabVIEW를 이용한 자동차 발전기 전압 계측시스템)

  • So, Soon-Sun;Yang, Su-Jin;Lee, Seong-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.5899-5905
    • /
    • 2014
  • Faults in electric power system can be a critical problem for vehicles. The system durability is determined mainly by the durability of their components and operating conditions. Monitoring the conditions of the electric power system may be necessary because it is very difficult to predict precisely when it will fail. Therefore, the aim of this study was to develop a diagnosis system for an electric power system of a vehicle. The alternator voltage, excitation voltage, lamp voltage, battery voltage, and engine rpm from a crank angle sensor are monitored continuously and the system fault can be then detected in real time. NI USB- 9201 DAQ and LabVIEW SW have been used to measure the voltages and analyze the data. Compared to conventional measurements for only each component, an integrated and portable measurement method was developed. In addition to the monitoring the electric power system in real time, the saved data from the measurement also provides valuable information to improve the durability of the components.

High Temperature Fatigue Life Prediction for Welded Joints of Recuperator Material for UAV (무인기용 레큐퍼레이터 소재의 용접부에 대한 고온 피로수명 예측)

  • Lee, Sang-rae;Kim, Jae-hwan;Kim, Jae-hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.2
    • /
    • pp.111-117
    • /
    • 2019
  • An experimental study on the welding part of a heat transfer plate that constitutes the lightweight and high efficiency recuperator is presented in this paper. In particular, to find out the service life of the welded part, fatigue characteristics were determined through experiments. Experiments were carried out on two materials (STS347, AL20-25 + nb), which are selected as the material of the recuperator; further, the specimens were manufactured through the methods used for actual fabrication and the standards recommended by ASTM. To evaluate the mechanical properties of the specimens at room and high temperature, MTS-810 was used in a high-temperature furnace. The tensile test was carried out at room and high temperatures for each specimen. The fatigue test was carried out by setting the load ratio corresponding to 50%, 40%, 30%, 20%, and 10% of the tensile strength at the stress ratio of 0.1. Finally, the fatigue life characteristics obtained by the experiment were compared with the stresses owing to the load generated in the operating conditions of the recuperator, and the lifetime of the welds was evaluated to prepare for the operation time required by the UAV.

Thermal Fluid Flow Analysis of Environment-Friendly Power Transformer Using CFD (CFD를 이용한 환경친화형 전력용 변압기의 열유동해석)

  • Kim, Ji-Ho;Kim, Jong-Wang;Kweon, Dong-Jin;Woo, Jung-Wook;Koo, Kyo-Sun;Lee, Hyang-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.924-925
    • /
    • 2011
  • 본 논문에서는 환경친화적이고, 인화점 및 발화점이 높아 화재의 위험도가 낮은 식물성 절연우를 기존 변압기의 광유를 대체로 사용하기 위한 열적 특성을 열유동해석을 이용하여 온도분포를 수치해석을 통하여 예측하였다. 해석모델로는 154kV 급 단상 내철형 유입자냉식 변압기를 대상으로 CFD 해석을 수행하였으며, 광유와 식물성 절연유는 부하의 변화에 따른 온도특성을 파악하는 동시에 핫스팟(hot spot)을 예측하였다. 본 논문은 변압기를 3차원 모델링하여 유동 및 온도 분포를 해석한 결과, 변압기의 내부 온도 및 핫스팟 추적에 대하여 변압기의 수명에 대한 예측이 가능하며, 식물성 절연유를 사용한 전력용 변압기 온도 분포 해석결과는 식물성 절연유의 적용 및 냉각 설계 변경에 기초자료롤 활용될 것이다.

  • PDF