• Title/Summary/Keyword: 사용블레이드

Search Result 285, Processing Time 0.024 seconds

Development of Digital-Image-Correlation Technique for Detecting Internal Defects in Simulated Specimens of Wind Turbine Blades (풍력 블레이드 모의 시편의 내부 결함 검출을 위한 이미지 상관법 기술 개발)

  • Hong, Kyung Min;Park, Nak Gyu
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.5
    • /
    • pp.205-212
    • /
    • 2020
  • In the performance of a wind turbine system, the blades play a vital role. However, they are susceptible to damage arising from complex and irregular loading (which may even cause catastrophic collapse), and they are expensive to maintain. Therefore, it is very important both to find defects after blade manufacturing is completed and to find damage after the blade is used for a certain period of time. This study provides a new perspective for the detection of internal defects in glass-fiber- and carbon-fiber-reinforced panels, which are used as the main materials in wind turbine blades. A gap or fracture between fiber-reinforced materials, which may occur during blade manufacturing or operation, is simulated by drilling a hole 5 mm in diameter in the middle layer of the laminated material. Then, a digital-image-correlation (DIC) method is used to detect internal defects in the blade. Tensile load is applied to the fabricated specimen using a tensile tester, and the generated changes are recorded and analyzed with the DIC system. In the glass-fiber-reinforced laminated specimen, internal defects were detected from a strain value of 5% until the end of the experiment, while in the case of the carbon-fiber-reinforced laminated specimen, internal defects were detected from 1% onward. It was proved using the DIC system that the defect was detected as a certain level of strain difference developed around the internal defects, according to the material properties.

A Study on Design of Wind Blade with Rated Capacity of 50kW (50kW 풍력블레이드 설계에 관한 연구)

  • Kim, Sang-Man;Moon, Chae-Joo;Jung, Gweon-Sung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.485-492
    • /
    • 2021
  • The wind turbines with a rated capacity of 50kW or less are generally considered as small class. Small wind turbines are an attractive alternative for off-grid power system and electric home appliances, both as stand-alone application and in combination with other energy technologies such as energy storage system, photovoltaic, small hydro or diesel engines. The research objective is to develop the 50kW scale wind turbine blades in ways that resemble as closely as possible with the construction and methods of utility scale turbine blade manufacturing. The mold process based on wooden form is employed to create a hollow, multi-piece, lightweight design using carbon fiber and fiberglass with an epoxy based resin. A hand layup prototyping method is developed using high density foam molds that allows short cycle time between design iterations of aerodynamic platforms. A production process of five blades is manufactured and key components of the blade are tested by IEC 61400-23 to verify the appropriateness of the design. Also, wind system with developed blades is tested by IEC 61400-12 to verify the performance characteristics. The results of blade and turbine system test showed the available design conditions for commercial operation.

Aerodynanamic design and performance analysis of a 5kW HAWT rotor blades (5Kw급 수평축 풍력 터빈 로터블레이드의 공력 설게 및 성능예측)

  • Kim, Mun-Oh;Kim, Bum-Suk;Mo, Jang-Ho;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.182.1-182.1
    • /
    • 2010
  • 현재 전 세계적으로 가장 널리 개발하고 보급되어지고 있는 풍력산업의 시장 규모는 매년 확대되고 있다. 특히 소형 풍력발전 시스템은 낙도 등의 전력 공급이 어려운 지역에 경제성 있는 전력 보급을 가능하게 한다. 국내의 미전화 지역과 일반 가정에서 풍력 에너지 자원을 적극 활용 개발하기 위해서 보다 우수한 성능의 풍력발전기용 블레이드를 설계하고자, 공기역학적인 최적설계에 대해 연구함으로써 추후 보급형 풍력발전 시스템의 개발에 필요한 설계 기술을 확립하고자한다. 본 연구는 설계된 블레이드의 유동해석 및 성능예측을 위하여 경제적으로 많은 지원이 필요한 대규모 풍동실험이 아닌 상용 CFD를 사용하여 보다 효율적으로 우수한 성능을 가지는 풍력 터빈을 설계함에 있다. Reynolds Averaged Navier-Stokes 방정식에 기반을 둔 CFD의 경우 이론적으로 명확한 해석이 가능하고, 실제 터빈의 운전 환경과 동일한 다양한 물리적 변수를 입력 데이터로서 활용할 수 있는 장점이 있기 때문에 풍력 터빈의 설계 과정에서 반영된 미소한 블레이드 형상변화 및 운전 조건의 변화에 따른 유동장의 변화 및 풍력터빈 성능을 정확히 예측할 수 있는 장점을 가지고 있다.

  • PDF

Numerical Study on the Effect of Turbine Blade Shape on Performance Characteristics of a Dental Air Turbine Handpiece (터빈 블레이드 형상에 따른 의료용 에어터빈 핸드피스의 성능 특성에 관한 수치적 연구)

  • Lee, Jeong-Ho;Kim, Kui-Soon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.1
    • /
    • pp.34-42
    • /
    • 2009
  • High-speed air turbine handpieces have been used as a dental cutting tool in clinical dentistry for over 50 years, but little study has been reported on their performance analysis. Therefore, the effect of turbine blade shape on performance characteristics of dental air turbine handpiece were studied using CFD in this paper. Computations have been performed for five different positions of turbine blade by using frozen rotor method that is one of steady-state method. The characteristics of turbine blade for shapes and reflection angles were analyzed. As a result of the computation, torque is increased by increasing the reflection angle of turbine blade.

Design Optimization of Cleaning Blade for Minimizing Stress (응력 최소화를 위한 클리닝 블레이드 최적설계)

  • Park, Chang-Hyun;Lee, Jun-Hee;Choi, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.5
    • /
    • pp.575-582
    • /
    • 2011
  • A cleaning blade is an attachment installed in the toner cartridge of a laser printer for removing the residual toner from an organic photo-conductive drum. There have been many studies on the performance and life of the rubber blade. We focus on optimally designing the blade shape parameters to minimize the maximum stress of the blade while satisfying design constraints on the cleaning performance and part interference. The blade is optimally designed using a design of experiments, meta-models and an optimization algorithm implemented in PIAnO (process integration, automation, and optimization), a commercial PIDO (process integration and design optimization) tool. We integrate the CAE tools necessary for the structural analysis of the cleaning blade, automate the analysis procedure, and optimize the solution using PIAnO. We decreased the maximum stress by 32.6% in comparison with that of the initial design.

Temperature-Dependent Stress Analysis of Rotating Functionally Graded Material Gas Turbine Blade Considering Operating Temperature and Ceramic Particle Size (운전온도와 세라믹 입자크기를 고려한 회전하는 경사기능성 가스터빈 블레이드의 응력해석)

  • Lee, Ki Bok;Yoo, Hong Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.193-203
    • /
    • 2014
  • Temperature-dependent stress analysis and heat transfer analysis of a rotating gas turbine blade made of functionally graded materials (FGMs) are presented considering turbine operating temperature and ceramic particle size. The material properties of functionally graded materials are assumed to vary continuously and smoothly across the thickness of the thin-walled blade. For obtaining system stiffness reflecting these characteristics, the one-dimensional heat transfer equation is applied along the thickness of the thin-walled blade for determining the temperature distribution. Using the results of the temperature analysis, the equations of motion of a rotating blade are derived with hybrid deformation variable modeling method along with the Rayleigh-Ritz assumed mode methods. The validity of the derived rotating blade model is evaluated by comparing its transient responses and temperature distribution with the results obtained using a commercial finite element code. The maximum tensile stress with operating speed and gradient index are obtained. Furthermore, the gradient index that minimizes blade temperature was investigated.

Design Optimization of QTP-UAV Prop-Rotor Blade Using ModelCenter (ModelCenter를 이용한 QTP-UAV 프롭로터 블레이드 형상 최적설계)

  • Kang, Hee Jung
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.4
    • /
    • pp.36-43
    • /
    • 2017
  • Blade design optimization of QTP-UAV prop-rotor was conducted using ModelCenter(R). Performance efficiency of the blade in hover and forward flight were adopted as the multi-objective function. Required power and pitch link force applied to constraint in each flight mode and limited lower than the value of the baseline blade. Design variables of root chord length of the blade, taper ratio, twist slope, twist angle at 0.5R of the blade, anhedral angle, parabolic coefficient of a tip shape and location of airfoil were used to generate the blade planform. CAMRAD-II, the comprehensive analysis program of rotorcraft, was used for performance analysis of prop-rotor blade in design process. Performance of the optimized blade improved 1.6% of figure of merit in hover and 13.6% of propulsive efficiency in forward flight. Pitch link force also reduced approximately 30% less than that of the baseline blade.

Feasibility of Bladder Compression Molded Prepreg as Small Wind Turbine Blade Material (소형 풍력 터빈 블레이드 재료로서 블래더 가압 방식 몰드 성형 프리프레그의 타당성)

  • Yi, Bo-Gun;Seo, Seong-Won;Song, Myung-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.2
    • /
    • pp.95-101
    • /
    • 2020
  • The wind turbine blades should be designed to possess a high stiffness and should be fabricated with a light and high strength material because they serve under extreme combination of lift and drag forces, converting kinetic energy of wind into shaft work. The goal of this study is to understand the basic knowledge required to curtail the process time consumed during the construction of small wind turbine blades using carbon fiber reinforced polymer (CFRP) prepeg composites. The configuration of turbine rotor was determined using the QBlade freeware program. The fluid dynamics module simulated the loads exerted by the wind of a specific speed, and the stress analysis module predicted the distributions of equivalent von Mises stress for representing the blade structures. It was suggested to modify the shape of test specimen from ASTM D638 to decrease the variance in measured tensile strengths. Then, a series of experiments were performed to confirm that the bladder compression molded CFRP prepreg can provide sufficient strength to small wind turbine blades and decrease the cure time simultaneously.

Analysis of Degradation Mechanism for Single Crystal Blade and Vane in Gas Turbine (가스터빈 단결정 블레이드 및 베인의 손상거동 분석)

  • Song, Kyu-So;Kim, Doo-Soo;Lee, Han-Sang;Yoo, Keun-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.5
    • /
    • pp.549-554
    • /
    • 2011
  • Recently, technical advances have been made in high efficiency gas turbine power plants. In domestic gas turbine facilities, the material properties of the blade and vane are degraded by the daily start-stop operations arising from the thermo mechanical cycle. We surveyed the time dependent degradation of the HP blade and vane to gather basic data for life assessment and damage analysis. The EOH(equivalent operating hours) of the blades were 23,686, 27,909, and 52,859 and the EOH of the vanes were 28,714 and 52,859, respectively. With increased operating hours, the shape of the primary ${\gamma}$' precipitate transformed from cubic to spherical, and its average size also increased. The leading edge area of the blades and the center of the vanes had the worst morphology, and this tendency agrees with the microhardness results. The thickness of the thermally grown oxide at the outer surface of the bond coat increased with increased operating hours.

Performance Evaluation and Analysis of a VHF-UHF Blade Antenna (VHF-UHF 대역 블레이드 안테나의 성능 평가 및 분석)

  • Go, Jooseoc;Byun, Gangil;Kim, Kichul;Ju, Jeungmin;Choo, Hosung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.10
    • /
    • pp.951-957
    • /
    • 2013
  • In this paper, we propose a performance evaluation process of aircraft blade antennas. The process consists of various sub-processes that should be considered for a stable communication link with the base station. The process begins with the settlement of the ground shape and size to evaluate the impedance matching characteristics of a stand-alone antenna. Next, the main communications area of the antenna is determined by considering a flight scenario, and then the minimum gain requirements of the antenna are derived in the operating frequency band. Finally, the proposed evaluation process is applied for a commercial aircraft blade antenna. The results demonstrate that the proposed process is suitable to be adopted for the evaluation of aircraft blade antennas.