• 제목/요약/키워드: 사용블레이드

Search Result 285, Processing Time 0.021 seconds

Development of a Helicopter Rotor Test Rig and Measurement of Aeroacoustic Characteristics (헬리콥터 로터 시험장치의 개발 및 공력소음특성의 측정)

  • Rhee, Wook;Choi, Jong-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.10-16
    • /
    • 2004
  • In this paper the aeroacoustic characteristics of a helicopter main rotor system is measured by using a pair of scaled rotor blades. A low noise rotor test jig is developed for noise measurement and the rotational speed, thrust and torque are measured simultaneously in order to match the aerodynamic conditions with the full scale rotor. The accuracy of the force measurement device was checked through a calibration procedure. The measured thurst and torque with a 1.2m rotor are compared to the results of analytical prediction and showed that the thrust data at various rotational speed followed the prediction relatively well, but the torque data considered less accurate. It is also found that the background noise level of the test rig is sufficiently low, and the measured noise level from the rotor can be scaled with rotor tip speed. However, the Mach number dependancy and the directivity changes depend on the noise source characteristics.

Numerical Study of the Rib Arrangements for Enhancing Heat Transfer in a Two-pass Channel of Large Aspect Ratio (종횡비가 큰 이차유로에서 냉각성능 향상을 위한 요철배열 연구)

  • Han, Sol;Choi, Seok Min;Sohn, Ho-Seong;Cho, Hyung Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.3
    • /
    • pp.161-169
    • /
    • 2017
  • The present study investigated the effect of the rib arrangement and a guide vane for enhancing internal cooling of the blade. Two types of rib arrangements were used in the first and second passage in parallel. Aspect ratio of the channel was 5 and a fixed Reynolds number based on hydraulic diameter was 10,000. The attack angle of rib was $60^{\circ}$, rib pitch-to-height ratio (p/e) was 10, and the rib height-to-hydraulic-diameter ratio ($e/D_h$) was 0.075. The effect of an interaction between Dean vortices and the secondary vortices from the first passage was observed. Overall, the attack angle of rib in the first passage was dominant factor to heat transfer and flow patterns in turning region. Also, the channel with a guide vane showed enhanced heat transfer at the tip surface with reducing flow separation and recirculation.

Design of an Elastomeric Bearing for a Helicopter Rotor Hub by Non-linear Finite Element Method (비선형 유한요소법을 이용한 헬리콥터 로터허브용 탄성체베어링 설계)

  • Kim, Hyun-Duk;Yoo, Si-Yoong;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.6
    • /
    • pp.612-619
    • /
    • 2010
  • In this paper, an elastomeric bearing for a helicopter rotor hub is designed using nonlinear finite element method. The elastomeric bearing is the main component of the helicopter rotor hub that acts as a hinge to three motions(flapping, lagging and pitching) of rotor blade. The elastomeric bearing consists of rubber and metal plates. The stiffness design of the elastomeric bearing is important because elastic deformation of rubber is served to hinge. Accordingly, the elastomeric bearing is designed to satisfy the stiffness requirements for rotor hub bearing. In this study, a FE model generation algorithm is developed and stiffness characteristic of a rubber plate is analyzed for an efficient design of the spherical elastomeric bearing. It is proven that the elastomeric bearing satisfies stiffness requirements of the spherical bearing for a helicopter rotor hub.

Development and Validations of the Aerodynamic Analysis Program of Multi-Rotors by Using a Free-Wake Method (자유후류 기법을 이용한 다중로터 공력해석 프로그램의 개발 및 검증)

  • Park, Sang-Gyoo;Lee, Jae-Won;Lee, Sang-Il;Oh, Se-Jong;Yee, Kwang-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.10
    • /
    • pp.859-867
    • /
    • 2007
  • The objective of this study is to develop and validate a numerical method which can handle the multi-rotor aerodynamic characteristics. For the purpose of power estimation, table look-up method is implemented to the existing unsteady panel code that is coupled with a time-marching free wake model. Also, the Reynolds number scaling is implemented for the application to various regions of Reynolds number. The computed results are validated against the available experimental data for coaxial and tandem rotors. In the validation case for the coaxial rotor, more accurate result is acquired when the thickness effect is considered. The wake instability problem occurs at a particular separation distance between the rotors for tandem rotors. The wake instability is avoided by setting the single-rotor wake geometry as the initial wake geometry for the multi-rotor analysis. The estimated result for rotor separation effect is compared with the result of the momentum theory.

A Study on Boundary Layer Behavior of an NACA 0012 Airfoil (NACA 0012 에어포일의 경계층 거동에 관한 연구)

  • 양재훈;장조원
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.10
    • /
    • pp.16-23
    • /
    • 2006
  • A study on the boundary layer behavior of an NACA 0012 airfoil at low Reynolds numbers was investigated in order to gain knowledge of a boundary layer that might be employed in a turbine blade and MAVs. A hot-wire anemometer was used to measure the boundary layer of an NACA 0012 airfoil at static angles of attack ${\alpha}$=$0^{\circ}$, $3^{\circ}$, and $6^{\circ}$, and Reynolds Numbers Re=$2.3{\times}10^4$, $3.3{\times}10^4$, and $4.8{\times}10^4$. The results of this study show that the laminar boundary layer on the airfoil surface is attached to the surface at ${\alpha}$=$0^{\circ}$, and the laminar separation of the boundary layer on the airfoil surface occurs at ${\alpha}$=$3^{\circ}$. Furthermore, the reattachment of the boundary layer in the present study occurs for the cases of Re=$3.3{\times}10^4$ and Re=$4.8{\times}10^4$at ${\alpha}$=$6^{\circ}$.

An Experimental Study of the Performance Characteristics on a Multi-Stage Micro Turbine with Various Stages (다단 마이크로터빈에서 단수 변화에 따른 터빈의 성능에 관한 실험적연구)

  • Cho, Chong-Hyun;Cho, Soo-Yong;Choi, Sang-Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.12
    • /
    • pp.76-82
    • /
    • 2005
  • An experimental study on an axial-type micro turbine which consists of maximum 6 stages is conducted to measure aerodynamic characteristics on each stage. This turbine has a 2.0 flow coefficient, 3.25 loading coefficient and 25.8mm mean diameter. The solidity of stators and rotors is within a 0.67~0.75, and the off-design performance is measured by changing the load after adjusting the mass flowrate and the total pressure to constant at inlet. A maximum specific output power of 2kW/kg/sec is obtained in one stage, but the increment of the specific output power with increasing stages is alleviated. In case of torque, the increment of the torque maintains to constant at low RPM region, but its increment become dull at high RPM region. The efficiency of the micro turbine becomes low because the tip gap effect is great due to the small blade, but it could be improved by increasing the stages.

A Study on the Blade Load Measurement of Partial-admission Turbine Cascade (충동형 터빈 캐스케이드의 깃 하중 측정에 관한 연구)

  • Lim, Dong-Hwa;Jang, Jin-Man;Lee, Eun-Seok;Kim, Jin-Han;Choi, Jong-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.143-148
    • /
    • 2007
  • An impulse turbine, which is a main component of a liquid rocket engine, needs to be a small size with light weight and generate large power. Since the impulse turbine is being operated under complicated supersonic conditions, flow analysis and performance prediction largely depend on CFD technique. In order to increase the reliability of the prediction code, however, it often requires an experimental data to compare. In this research a rotating turbine rotor with multiple blades is simulated with a two-dimensional stationary cascade to check the effect of major flow parameters. Mach number is measured at nozzle exit by using a pitot tube and the blade thrust was also measured with a load cell. The measured thrust coefficient and the power are compared well with the designed conditions, which proves the design procedures are properly taken.

Application of CFD in The Analysis of Aerodynamic Characteristics for Aircraft Propellers (전산유체역학을 이용한 항공기 프로펠러 공력특성 연구)

  • Cho, Kyuchul;Kim, Hyojin;Park, Il-Ju;Jang, Sungbok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.11
    • /
    • pp.917-926
    • /
    • 2012
  • The analysis of aerodynamic characteristics for aircraft propellers is studied to develop high efficiency composite propellers. It is to verify the accuracy and reliability of predicting the efficiency characteristics of aircraft propellers by applying nonlinear numerical analysis. The numerical simulation method incorporated the CFD code, which is based on RANS (Reynolds Averaged Navier-Stocks) equation. The study includes a comparative analysis between the numerical simulation results and the wind tunnel test results of the full-scale aircraft propeller. The comparison shows that thrust and power coefficients of the propeller calculated by nonlinear numerical analysis are higher than those based on the results generated from the wind tunnel test. The efficiency of the propeller calculated by numerical analysis matches closely to the efficiency based on the wind tunnel test results. The verification results are analyzed, then, will be used in optimizing the design and manufacture of the subject aircraft propeller studied.

Development of Application for Blender Control and Alarm Service based on IoT (사물인터넷 기반 블렌더 제어 및 알람 서비스를 위한 애플리케이션 개발)

  • Kwon, Donguk;Lim, Wansu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.12
    • /
    • pp.76-81
    • /
    • 2016
  • The Internet of Things (IoT) interconnects every device by allowing them to communicate directly and share information with each other and has been recently applied to various industrial fields. The integration of home appliances with IoT has led to the creation of new markets by providing quick and better experience to consumers. Although IoT has been integrated into most modern day appliances, there have been few developments for kitchen appliances. This paper presents the development of integrating IoT with the blender, one of the most widely used appliance in the kitchen. A custom application was made to interact with the blender that provides three main functions: digital controller, maintenance, and defrosting alarm. The function of digital controller provides wireless control to the conventional blender. The maintenance function detects and alerts the user on blender reliability with the intent of enabling the anticipation of hardware failures. The defrost alarm alerts the user when the ingredient has reached the appropriate and desired temperature when cooking frozen food.

Application of the V2-F Turbulence Model for Flow Analysis of Turbomachinery (V2-F 난류 모델의 터보기계 유동 해석 적용)

  • Park, Jae Hyeon;Sohn, Dong Kyung;Kim, Chang Hyun;Baek, Je Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.2
    • /
    • pp.75-83
    • /
    • 2016
  • Since a turbomachine has complex flow characteristics, which are caused by adverse pressure gradient and high speed motion, an elaborate turbulence model is needed to accurately predict the flow. Some turbulence models such as an algebraic or a two-equation eddy viscosity model have been used for in-house RANS-code, but it is difficult to obtain good result for several complex flows. In this study, Durbin's V2-F turbulence model, which has been known for better prediction for severe flow separation, is applied to T-Flow. It was validated for simple cases such as channel and compressor cascade, and its applicability to turbomachinery was shown by analyzing internal flow of a single rotor. As a result, the V2-F turbulence model shows better blade surface pressure distribution than the one-and-two equation turbulence model.