Han, Daegun;Choi, Changhyun;Kim, Duckhwan;Jung, Jaewon;Kim, Jungwook;Kim, Soo Jun
Journal of Wetlands Research
/
v.18
no.2
/
pp.154-165
/
2016
Recently, the frequency of extreme rainfall event has increased due to climate change and impermeable area also has increased due to rapid urbanization. Therefore, we ought to prepare countermeasures for flood reduction to reduce the damage. To consider climate change, the frequency based rainfall was calculated according to the aimed period(reference : 1971~2010, Target period I : 2011~2040, Target period II : 2041~2070, Target period III : 2071~2100) and the flood discharge was also calculated by climate change using HEC-HMS model. Also, the flood elevation was calculated by each alternative through HEC-RAS model, setting 5 sizes of drainage pumps and reservoirs respectively. The flood map was constructed using topographical data and flood elevation, and the economic analysis was conducted for reduction of flood damage using Multi dimension - Flood Damage Analysis, MD-FDA. As a result of the analysis on the flood control effect, a head of drainage pump was reduced by 0.06m up to 0.44m while it was reduced by 0.01m up to 1.86m in the case of a detention pond. The flooded area shrunk by up to 32.64% from 0.3% and inundation depth also dropped. As a result of a comparison of the Benefit/Cost index estimated by the economic analysis, detention pond E in period I and pump D in period II and III were deemed appropriate as an alternative for climate change. The results are expected to be used as good practices when implementing the flood control works considering climate change.
Journal of agricultural medicine and community health
/
v.26
no.2
/
pp.111-132
/
2001
This study was conducted to examine the therapeutic compliance and its related factors in rural women with osteoporosis. A questionnaire survey was performed from April to May in 2000 for 140 osteoporotic patients who were diagnosed from April to June in 1999 through community health program. The study employed the health belief model for predicting and explaining sick role behavior. The analysis techniques employed included contingency table analysis and path analysis using LISREL. The major results of this study were as follows: Of the subjects, 12.1% were continuously complaint, 53.6% were intermittently compliant, and 34.3% were non- compliant to calcium supplement therapy. As the result of path analysis, the therapeutic compliance was significantly higher(${\mid}T{\mid}$ >2.0) as patients had higher perceived severity of disease, lower perceived barriers of treatment, and when patients thought their disease status as severe. As the patients had higher educational level, more experience of mass media contact or health education about osteoporosis, and when family had more concern for patient treatment, they had higher perceived susceptibility of complication(bone fracture)${\mid}T{\mid}$ >2.0). The patients had higher perceived severity(${\mid}T{\mid}$ >2.0) as they had more educational level, more advice for treatment from their doctors, and when family had more concern for their treatment. As the patients had more advice for treatment from their doctors and when family had more concern for their treatment, they had higher perceived benefit of treatment and lower perceived barriers to treatment(${\mid}T{\mid}$ >2.0). In order to improve the therapeutic compliance in rural osteoporotic women, it would be necessary that the patient should recognize their disease severity properly. And the perceived barriers should be removed through supportive environments for osteoporosis treatment such as doctor 's more advice and family 's more concern for treatment. In addition, effective and continuous management system for osteoporotic patients should be established.
We test a model of investment-cashflow-growth opportunities relationship in order to estimate the sensitivities to investments. In this study, we use a new proxy variable for the value of growth opportunities(hereafter "VGO"), which is based on the seminal papers of M&M(1958:1961:1963) and Lee(2006;2007). The empirical findings on the sensitivities of cashflow and growth opportunities are as follows. First, when the traditional proxy variables for the growth opportunities such as Tobin's Q, MBR and sales growth are included with the new proxy VGO in the estimation, their coefficients are turned out to be insignificant. Second, only the new proxy variable VGO shows a statistically significant positive sensitibity to investment, which can be regarded that the growth opportunities hold the positive influences to investments. Third, the Tobin's Q can be decomposed into three factors such as the value of growth opportunities(VGO), the value of asset-in-place and valuation errors. It turns out that only the VGO shows a statistically significant positive relationship with investment among others. This means that the new variable VGO is a good proxy variable for the growth opportunities in the investment-cashflow sensitivity analysis. In sum, thanks to the above findings in this study, we can say that it will not be proper to choose a proxy variable for the growth opportunities from the traditional set of proxies such as Tobin's Q, MBR, or sales growth rate.
Proceedings of the Korean DIstribution Association Conference
/
2005.11a
/
pp.29-51
/
2005
Brands are important in the consumer market. They are the interface between consumers and the company, consumers may develop loyalty to brands. also, The late development of industrial marketing explains the near absence of research on Brand Equity in business to business. With recent change, industrial companies have shifted from a production focus to a customer focus. industrial brand is fast developing. The basic purpose of this study is to investigate industrial brand trust and loyalty affecting the Result of business relationship between industrial buyers and suppliers. Factors hypothesized to influence trust in a brand include a number of brand characteristics, company characteristics and consumer-brand characteristics. This research presented a comprehensive constructive model consisting of components of industrial brand trust and loyalty, and then propose the research model base on prior researches and studies about relationships among components of industrial brand loyalty. Data were gathered from respondents who work in industrial buying center. For this study, Data were analyzed by SPSS 10.0 and AMOS 4.0. The results of this research analysis were as fallow. Industrial brand trust and loyalty were positively related with a number of industrial brand characteristics, supplier characteristics and buyer-brand characteristics. relationship commitment. This research newly proposed the concept of 'industrial brand trust and loyalty affecting the Result of business relationship between industrial buyers and suppliers'
Purpose: This study was undertaken to develop a nutrition quotient for elementary school children (NQ-C) for evaluating the overall dietary quality and eating behaviors. Methods: The NQ-C was developed by implementing 3 stages: item generation, item reduction, and validation. Candidate food behavior checklist (FBC) items of the NQ-C were derived from systematic literature reviews, expert in-depth interviews, statistical analyses of the fifth Korean National Health and Nutrition Examination Survey data, and national nutrition policies and recommendations. For the pilot survey, 260 elementary school students (128 second graders and 132 fifth graders) completed self-administered questionnaires as well as 24-hour dietary intakes, with the help of their parents and survey team staff, if required. Based on the pilot survey results, expert reviews, and priorities of national nutrition policy and recommendations, checklist items were reduced from 41 to 24. A total of 20 items for NQ-C were finally selected from results generated from 1,144 nationwide samples surveyed. Construct validity of the NQ-C was assessed using the confirmatory factor analysis, LInear Structural RELations. Results: Analyses of the exploratory factors of NQ-C identified that 5 dimensions of diet (balance, diversity, moderation, practice and environment) accounted for 46.2% of the total variance. Standardized path coefficients were used as weights of the items. The NQ-C and 5-factor scores of the subjects were calculated using the obtained weights of the FBC items. Conclusion: Our data indicates that NQ-C is a useful and suitable instrument for assessing nutrition adequacy, dietary quality, and eating behaviors of Korean elementary school children.
With the rapid development of artificial intelligence technology, various techniques have been developed to extract meaningful information from unstructured text data which constitutes a large portion of big data. Over the past decades, text mining technologies have been utilized in various industries for practical applications. In the field of business intelligence, it has been employed to discover new market and/or technology opportunities and support rational decision making of business participants. The market information such as market size, market growth rate, and market share is essential for setting companies' business strategies. There has been a continuous demand in various fields for specific product level-market information. However, the information has been generally provided at industry level or broad categories based on classification standards, making it difficult to obtain specific and proper information. In this regard, we propose a new methodology that can estimate the market sizes of product groups at more detailed levels than that of previously offered. We applied Word2Vec algorithm, a neural network based semantic word embedding model, to enable automatic market size estimation from individual companies' product information in a bottom-up manner. The overall process is as follows: First, the data related to product information is collected, refined, and restructured into suitable form for applying Word2Vec model. Next, the preprocessed data is embedded into vector space by Word2Vec and then the product groups are derived by extracting similar products names based on cosine similarity calculation. Finally, the sales data on the extracted products is summated to estimate the market size of the product groups. As an experimental data, text data of product names from Statistics Korea's microdata (345,103 cases) were mapped in multidimensional vector space by Word2Vec training. We performed parameters optimization for training and then applied vector dimension of 300 and window size of 15 as optimized parameters for further experiments. We employed index words of Korean Standard Industry Classification (KSIC) as a product name dataset to more efficiently cluster product groups. The product names which are similar to KSIC indexes were extracted based on cosine similarity. The market size of extracted products as one product category was calculated from individual companies' sales data. The market sizes of 11,654 specific product lines were automatically estimated by the proposed model. For the performance verification, the results were compared with actual market size of some items. The Pearson's correlation coefficient was 0.513. Our approach has several advantages differing from the previous studies. First, text mining and machine learning techniques were applied for the first time on market size estimation, overcoming the limitations of traditional sampling based- or multiple assumption required-methods. In addition, the level of market category can be easily and efficiently adjusted according to the purpose of information use by changing cosine similarity threshold. Furthermore, it has a high potential of practical applications since it can resolve unmet needs for detailed market size information in public and private sectors. Specifically, it can be utilized in technology evaluation and technology commercialization support program conducted by governmental institutions, as well as business strategies consulting and market analysis report publishing by private firms. The limitation of our study is that the presented model needs to be improved in terms of accuracy and reliability. The semantic-based word embedding module can be advanced by giving a proper order in the preprocessed dataset or by combining another algorithm such as Jaccard similarity with Word2Vec. Also, the methods of product group clustering can be changed to other types of unsupervised machine learning algorithm. Our group is currently working on subsequent studies and we expect that it can further improve the performance of the conceptually proposed basic model in this study.
Festivals are an indispensable feature of cultural tourism(Formica & Uysal, 1998). Cultural tourism festivals are increasingly being used as instruments promoting tourism and boosting the regional economy. So much research related to festivals is undertaken from a variety of perspectives. Plans to revisit a particular festival have been viewed as an important research topic both in academia and the tourism industry. Therefore festivals have frequently been leveled as cultural events. Cultural tourism festivals have become a crucial component in constituting the attractiveness of tourism destinations(Prentice, 2001). As a result, a considerable number of tourist studies have been carried out in diverse cultural tourism festivals(Backman et al., 1995; Crompton & Mckay, 1997; Park, 1998; Clawson & Knetch, 1996). Much of previous literature empirically shows the close linkage between tourist satisfaction and behavioral intention in festivals. The main objective of this study is to investigate the effects of evaluation attributes of cultural tourism festivals on satisfaction and behavioral intention. accomplish the research objective, to find out evaluation items of cultural tourism festivals through the literature study an empirical study. Using a varimax rotation with Kaiser normalization, the research obtained four factors in the 18 evaluation attributes of cultural tourism festivals. Some empirical studies have examined the relationship between behavioral intention and actual behavior. To understand between tourist satisfaction and behavioral intention, this study suggests five hypotheses and hypothesized model. In this study, the analysis is based on primary data collected from visitors who participated in '2006 Gwangju Kimchi Festival'. In total, 700 self-administered questionnaires were distributed and 561 usable questionnaires were obtained. Respondents were presented with the 18 satisfactions item on a scale from 1(strongly disagree) to 7(strongly agree). Dimensionality and stability of the scale were evaluated by a factor analysis with varimax rotation. Four factors emerged with eigenvalues greater than 1, which explained 66.40% of the total variance and Cronbach' alpha raging from 0.876 to 0.774. And four factors named: advertisement and guides, programs, food and souvenirs, and convenient facilities. To test and estimate the hypothesized model, a two-step approach with an initial measurement model and a subsequent structural model for Structural Equation Modeling was used. The AMOS 4.0 analysis package was used to conduct the analysis. In estimating the model, the maximum likelihood procedure was used.In this study Chi-square test is used, which is the most common model goodness-of-fit test. In addition, considering the literature about the Structural Equation Modeling, this study used, besides Chi-square test, more model fit indexes to determine the tangibility of the suggested model: goodness-of-fit index(GFI) and root mean square error of approximation(RMSEA) as absolute fit indexes; normed-fit index(NFI) and non-normed-fit index(NNFI) as incremental fit indexes. The results of T-test and ANOVAs revealed significant differences(0.05 level), therefore H1(Tourist Satisfaction level should be different from Demographic traits) are supported. According to the multiple Regressions analysis and AMOS, H2(Tourist Satisfaction positively influences on revisit intention), H3(Tourist Satisfaction positively influences on word of mouth), H4(Evaluation Attributes of cultural tourism festivals influences on Tourist Satisfaction), and H5(Tourist Satisfaction positively influences on Behavioral Intention) are also supported. As the conclusion of this study are as following: First, there were differences in satisfaction levels in accordance with the demographic information of visitors. Not all visitors had the same degree of satisfaction with their cultural tourism festival experience. Therefore it is necessary to understand the satisfaction of tourists if the experiences that are provided are to meet their expectations. So, in making festival plans, the organizer should consider the demographic variables in explaining and segmenting visitors to cultural tourism festival. Second, satisfaction with attributes of evaluation cultural tourism festivals had a significant direct impact on visitors' intention to revisit such festivals and the word of mouth publicity they shared. The results indicated that visitor satisfaction is a significant antecedent of their intention to revisit such festivals. Festival organizers should strive to forge long-term relationships with the visitors. In addition, it is also necessary to understand how the intention to revisit a festival changes over time and identify the critical satisfaction factors. Third, it is confirmed that behavioral intention was enhanced by satisfaction. The strong link between satisfaction and behavioral intentions of visitors areensured by high quality advertisement and guides, programs, food and souvenirs, and convenient facilities. Thus, examining revisit intention from a time viewpoint may be of a great significance for both practical and theoretical reasons. Additionally, festival organizers should give special attention to visitor satisfaction, as satisfied visitors are more likely to return sooner. The findings of this research have several practical implications for the festivals managers. The promotion of cultural festivals should be based on the understanding of tourist satisfaction for the long- term success of tourism. And this study can help managers carry out this task in a more informed and strategic manner by examining the effects of demographic traits on the level of tourist satisfaction and the behavioral intention. In other words, differentiated marketing strategies should be stressed and executed by relevant parties. The limitations of this study are as follows; the results of this study cannot be generalized to other cultural tourism festivals because we have not explored the many different kinds of festivals. A future study should be a comparative analysis of other festivals of different visitor segments. Also, further efforts should be directed toward developing more comprehensive temporal models that can explain behavioral intentions of tourists.
Thanks to the rapid development of information technologies, the data available on Internet have grown rapidly. In this era of big data, many studies have attempted to offer insights and express the effects of data analysis. In the tourism and hospitality industry, many firms and studies in the era of big data have paid attention to online reviews on social media because of their large influence over customers. As tourism is an information-intensive industry, the effect of these information networks on social media platforms is more remarkable compared to any other types of media. However, there are some limitations to the improvements in service quality that can be made based on opinions on social media platforms. Users on social media platforms represent their opinions as text, images, and so on. Raw data sets from these reviews are unstructured. Moreover, these data sets are too big to extract new information and hidden knowledge by human competences. To use them for business intelligence and analytics applications, proper big data techniques like Natural Language Processing and data mining techniques are needed. This study suggests an analytical approach to directly yield insights from these reviews to improve the service quality of hotels. Our proposed approach consists of topic mining to extract topics contained in the reviews and the decision tree modeling to explain the relationship between topics and ratings. Topic mining refers to a method for finding a group of words from a collection of documents that represents a document. Among several topic mining methods, we adopted the Latent Dirichlet Allocation algorithm, which is considered as the most universal algorithm. However, LDA is not enough to find insights that can improve service quality because it cannot find the relationship between topics and ratings. To overcome this limitation, we also use the Classification and Regression Tree method, which is a kind of decision tree technique. Through the CART method, we can find what topics are related to positive or negative ratings of a hotel and visualize the results. Therefore, this study aims to investigate the representation of an analytical approach for the improvement of hotel service quality from unstructured review data sets. Through experiments for four hotels in Hong Kong, we can find the strengths and weaknesses of services for each hotel and suggest improvements to aid in customer satisfaction. Especially from positive reviews, we find what these hotels should maintain for service quality. For example, compared with the other hotels, a hotel has a good location and room condition which are extracted from positive reviews for it. In contrast, we also find what they should modify in their services from negative reviews. For example, a hotel should improve room condition related to soundproof. These results mean that our approach is useful in finding some insights for the service quality of hotels. That is, from the enormous size of review data, our approach can provide practical suggestions for hotel managers to improve their service quality. In the past, studies for improving service quality relied on surveys or interviews of customers. However, these methods are often costly and time consuming and the results may be biased by biased sampling or untrustworthy answers. The proposed approach directly obtains honest feedback from customers' online reviews and draws some insights through a type of big data analysis. So it will be a more useful tool to overcome the limitations of surveys or interviews. Moreover, our approach easily obtains the service quality information of other hotels or services in the tourism industry because it needs only open online reviews and ratings as input data. Furthermore, the performance of our approach will be better if other structured and unstructured data sources are added.
Internet commerce has been growing at a rapid pace for the last decade. Many firms try to reach wider consumer markets by adding the Internet channel to the existing traditional channels. Despite the various benefits of the Internet channel, a significant number of firms failed in managing the new type of channel. Previous studies could not cleary explain these conflicting results associated with the Internet channel. One of the major reasons is most of the previous studies conducted analyses under a specific market condition and claimed that as the impact of Internet channel introduction. Therefore, their results are strongly influenced by the specific market settings. However, firms face various market conditions in the real worlddensity and disutility of using the Internet. The purpose of this study is to investigate the impact of various market environments on a firm's optimal channel strategy by employing a flexible game theory model. We capture various market conditions with consumer density and disutility of using the Internet.
shows the channel structures analyzed in this study. Before the Internet channel is introduced, a monopoly manufacturer sells its products through an independent physical store. From this structure, the manufacturer could introduce its own Internet channel (MI). The independent physical store could also introduce its own Internet channel and coordinate it with the existing physical store (RI). An independent Internet retailer such as Amazon could enter this market (II). In this case, two types of independent retailers compete with each other. In this model, consumers are uniformly distributed on the two dimensional space. Consumer heterogeneity is captured by a consumer's geographical location (ci) and his disutility of using the Internet channel (${\delta}_{N_i}$).
shows various market conditions captured by the two consumer heterogeneities.
(a) illustrates a market with symmetric consumer distributions. The model captures explicitly the asymmetric distributions of consumer disutility in a market as well. In a market like that is represented in
(c), the average consumer disutility of using an Internet store is relatively smaller than that of using a physical store. For example, this case represents the market in which 1) the product is suitable for Internet transactions (e.g., books) or 2) the level of E-Commerce readiness is high such as in Denmark or Finland. On the other hand, the average consumer disutility when using an Internet store is relatively greater than that of using a physical store in a market like (b). Countries like Ukraine and Bulgaria, or the market for "experience goods" such as shoes, could be examples of this market condition.
summarizes the various scenarios of consumer distributions analyzed in this study. The range for disutility of using the Internet (${\delta}_{N_i}$) is held constant, while the range of consumer distribution (${\chi}_i$) varies from -25 to 25, from -50 to 50, from -100 to 100, from -150 to 150, and from -200 to 200.
summarizes the analysis results. As the average travel cost in a market decreases while the average disutility of Internet use remains the same, average retail price, total quantity sold, physical store profit, monopoly manufacturer profit, and thus, total channel profit increase. On the other hand, the quantity sold through the Internet and the profit of the Internet store decrease with a decreasing average travel cost relative to the average disutility of Internet use. We find that a channel that has an advantage over the other kind of channel serves a larger portion of the market. In a market with a high average travel cost, in which the Internet store has a relative advantage over the physical store, for example, the Internet store becomes a mass-retailer serving a larger portion of the market. This result implies that the Internet becomes a more significant distribution channel in those markets characterized by greater geographical dispersion of buyers, or as consumers become more proficient in Internet usage. The results indicate that the degree of price discrimination also varies depending on the distribution of consumer disutility in a market. The manufacturer in a market in which the average travel cost is higher than the average disutility of using the Internet has a stronger incentive for price discrimination than the manufacturer in a market where the average travel cost is relatively lower. We also find that the manufacturer has a stronger incentive to maintain a high price level when the average travel cost in a market is relatively low. Additionally, the retail competition effect due to Internet channel introduction strengthens as average travel cost in a market decreases. This result indicates that a manufacturer's channel power relative to that of the independent physical retailer becomes stronger with a decreasing average travel cost. This implication is counter-intuitive, because it is widely believed that the negative impact of Internet channel introduction on a competing physical retailer is more significant in a market like Russia, where consumers are more geographically dispersed, than in a market like Hong Kong, that has a condensed geographic distribution of consumers.