• Title/Summary/Keyword: 사물 인터넷 플랫폼

Search Result 379, Processing Time 0.023 seconds

Development for Worker Safety Management System on the EOS Blockchain (EOS 블록체인 기반의 작업자 안전관리 시스템 개발)

  • Jo, Yeon-Jeong;Eom, Hyun-Min;Sim, Chae-Lin;Koo, Hyeong-Seo;Lee, Myung-Joon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.10
    • /
    • pp.797-808
    • /
    • 2019
  • In a closed workplace, the management of the workplace is important because the environmental data at the workplace has a great influence on the safety of workers. Today's industrial sites are transformed into data-based factories that collect and analyze data through sensors in those sites, requiring a management system to ensure safety. In general, a safety management system stores and manages data on a central server associated with a database. Since such management system introduces high possibility of forgery and loss of data, workers often suspect the reliability of the information on the management system. In this paper, we present a worker safety management system based on the EOS blockchain which is considered as third-generation blockchain technology. The developed system consists of a set of smart contracts on the EOS blockchain and 3 decentralized applications associated with the blockchain. According to the roles of users, the worker and manager applications respectively perform the process of initiating or terminating tasks as blockchain transactions. The entire transaction history is distributed and stored in all nodes participating in the blockchain network, so forgery and loss of data is practically impossible. The system administrator application assigns the account rights of workers and managers appropriate for performing the functions, and specifies the safety standards of IoT data for ensuring workplace safety. The IoT data received from sensor platforms in workplaces and the information on initiation, termination or approval of tasks assigned to workers, are explicitly stored and managed in the EOS smart contracts.

A Study on the Application of Modularization Technique to Standard Security Policy to Protect Information Assets and the Securement of Confidentiality and Integrity (정보자산 보호를 위한 표준 보안정책 모듈화 기법 적용과 기밀성 및 무결성 확보를 위한 연구)

  • Seo, Woo-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.111-118
    • /
    • 2019
  • For the security of a vast amount of information, it has been started to diagnose the site as a way of operating and managing the information owned by a company holding assets, to establish indexes to check the actual status and all kinds of standards to obtain security, and also to classify the information assets based on that. This has been extended to many different areas including policies to operate and manage information assets, services, the management of owned devices as physical assets, and also the management of logical assets for application software and platforms. Some of these information assets are already being operated in reality as new technology in new areas, for example, Internet of Things. Of course, a variety of electronic devices like Smart Home are being used in ordinary families, and unlike in the past, these devices generate a series of information life cycles such as accumulating and processing information. Moreover, as even distribution is now being realized, we are facing a task to secure the stability of information assets and also information that assets are holding. The purpose of this study is to suggest and apply standard security policy by moduling methods for information assets owned by companies and even families and obtain the enhancement of confidentiality as well as integrity.

Study on Development of LED Camping Light Design Based on IOT and Emotional Lighting Contents (IOT 및 감성조명 콘텐츠 기반의 LED 캠핑등 디자인 개발에 관한 연구)

  • Kim, Hee-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.12
    • /
    • pp.332-342
    • /
    • 2018
  • This study is aimed at suggesting information about technical choices for designing LED camping lights based on emotional lighting contents of integrated IOT and design areas which take a central role in creation and knowledge based industries and the procedure for materializing them. 'i-Light,' a portable LED camping light, is 'connected lighting' connecting men, space and emotion and a smart camping light based on IOT and emotional lighting contents. 'i-Light' has two functions. One is about lighting for adjusting color and color temperature naturally and the other is about safety for detecting harmful gases. 'i-Light' also has various emotional functions for experiencing interaction and taste of light. For the purpose, portable LED camping lights were designed, first of all, and then a highly color rendering/full-color lighting module, a smart sensor module and an IOT device platform were developed. In addition, efforts were made to establish detailed data about emotional lighting contents and to develop a Web application based on them. Finally, prototypes of portable LED camping lights were made to get a test bench and usability evaluation from related organizations. According to the results, all of 12 developed emotional lighting contents and three IOT safety sensors were suitable and prototypes were satisfactory. This paper will suggest a direction about actual technical choices for development of contents and products integrating artificial intelligence and big data and about the procedure for materializing them.

Apriori Based Big Data Processing System for Improve Sensor Data Throughput in IoT Environments (IoT 환경에서 센서 데이터 처리율 향상을 위한 Apriori 기반 빅데이터 처리 시스템)

  • Song, Jin Su;Kim, Soo Jin;Shin, Young Tae
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.10
    • /
    • pp.277-284
    • /
    • 2021
  • Recently, the smart home environment is expected to be a platform that collects, integrates, and utilizes various data through convergence with wireless information and communication technology. In fact, the number of smart devices with various sensors is increasing inside smart homes. The amount of data that needs to be processed by the increased number of smart devices is also increasing, and big data processing systems are actively being introduced to handle it effectively. However, traditional big data processing systems have all requests directed to cluster drivers before they are allocated to distributed nodes, leading to reduced cluster-wide performance sharing as cluster drivers managing segmentation tasks become bottlenecks. In particular, there is a greater delay rate on smart home devices that constantly request small data processing. Thus, in this paper, we design a Apriori-based big data system for effective data processing in smart home environments where frequent requests occur at the same time. According to the performance evaluation results of the proposed system, the data processing time was reduced by up to 38.6% from at least 19.2% compared to the existing system. The reason for this result is related to the type of data being measured. Because the amount of data collected in a smart home environment is large, the use of cache servers plays a major role in data processing, and association analysis with Apriori algorithms stores highly relevant sensor data in the cache.

Distributed Edge Computing for DNA-Based Intelligent Services and Applications: A Review (딥러닝을 사용하는 IoT빅데이터 인프라에 필요한 DNA 기술을 위한 분산 엣지 컴퓨팅기술 리뷰)

  • Alemayehu, Temesgen Seyoum;Cho, We-Duke
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.12
    • /
    • pp.291-306
    • /
    • 2020
  • Nowadays, Data-Network-AI (DNA)-based intelligent services and applications have become a reality to provide a new dimension of services that improve the quality of life and productivity of businesses. Artificial intelligence (AI) can enhance the value of IoT data (data collected by IoT devices). The internet of things (IoT) promotes the learning and intelligence capability of AI. To extract insights from massive volume IoT data in real-time using deep learning, processing capability needs to happen in the IoT end devices where data is generated. However, deep learning requires a significant number of computational resources that may not be available at the IoT end devices. Such problems have been addressed by transporting bulks of data from the IoT end devices to the cloud datacenters for processing. But transferring IoT big data to the cloud incurs prohibitively high transmission delay and privacy issues which are a major concern. Edge computing, where distributed computing nodes are placed close to the IoT end devices, is a viable solution to meet the high computation and low-latency requirements and to preserve the privacy of users. This paper provides a comprehensive review of the current state of leveraging deep learning within edge computing to unleash the potential of IoT big data generated from IoT end devices. We believe that the revision will have a contribution to the development of DNA-based intelligent services and applications. It describes the different distributed training and inference architectures of deep learning models across multiple nodes of the edge computing platform. It also provides the different privacy-preserving approaches of deep learning on the edge computing environment and the various application domains where deep learning on the network edge can be useful. Finally, it discusses open issues and challenges leveraging deep learning within edge computing.

Analysis on Results and Changes in Recent Forecasting of Earthquake and Space Technologies in Korea and Japan (한국과 일본의 지진재해 및 우주이용 기술예측에 대한 최근의 변화 분석)

  • Ahn, Eun-Young
    • Economic and Environmental Geology
    • /
    • v.55 no.4
    • /
    • pp.421-428
    • /
    • 2022
  • This study analyzes emerging earthquake and space use technologies from the latest Korean and Japanese scientific and technological foresights in 2022 and 2019, respectively. Unlike the earthquake prediction and early warning technologies presented in the 2017 study, the emerging earthquake technologies in 2022 in Korea was described as an earthquake/complex disaster information technology and public data platform. Many detailed future technologies were presented in Japan's 2019 survey, which includes largescale earthquake prediction, induced earthquake, national liquefaction risk, wide-scale stress measurement; and monitoring by Internet of Things (IoT) or artificial intelligence (AI) observation & analysis. The latest emerging space use technology in Korea and Japan were presented in more detail as robotic mining technology for water/ice, Helium-3, and rare earth metals, and manned station technology that utilizes local resources on the moon and Mars. The technological realization year forecasting in 2019 was delayed by 4-10 years from the prediction in 2015, which could be greater due to the Corona 19 epidemic, the declaration of carbon neutrality in Korea and Japan in 2020 and the Russo-Ukrainian War in 2022. However, it is required to more active research on earthquake and space technologies linked to information technology.

An Efficient Wireless Signal Classification Based on Data Augmentation (데이터 증강 기반 효율적인 무선 신호 분류 연구 )

  • Sangsoon Lim
    • Journal of Platform Technology
    • /
    • v.10 no.4
    • /
    • pp.47-55
    • /
    • 2022
  • Recently, diverse devices using different wireless technologies are gradually increasing in the IoT environment. In particular, it is essential to design an efficient feature extraction approach and detect the exact types of radio signals in order to accurately identify various radio signal modulation techniques. However, it is difficult to gather labeled wireless signal in a real environment due to the complexity of the process. In addition, various learning techniques based on deep learning have been proposed for wireless signal classification. In the case of deep learning, if the training dataset is not enough, it frequently meets the overfitting problem, which causes performance degradation of wireless signal classification techniques using deep learning models. In this paper, we propose a generative adversarial network(GAN) based on data augmentation techniques to improve classification performance when various wireless signals exist. When there are various types of wireless signals to be classified, if the amount of data representing a specific radio signal is small or unbalanced, the proposed solution is used to increase the amount of data related to the required wireless signal. In order to verify the validity of the proposed data augmentation algorithm, we generated the additional data for the specific wireless signal and implemented a CNN and LSTM-based wireless signal classifier based on the result of balancing. The experimental results show that the classification accuracy of the proposed solution is higher than when the data is unbalanced.

Approaches to Applying Social Network Analysis to the Army's Information Sharing System: A Case Study (육군 정보공유체계에 사회관계망 분석을 적용하기 위한방안: 사례 연구)

  • GunWoo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.597-603
    • /
    • 2023
  • The paradigm of military operations has evolved from platform-centric warfare to network-centric warfare and further to information-centric warfare, driven by advancements in information technology. In recent years, with the development of cutting-edge technologies such as big data, artificial intelligence, and the Internet of Things (IoT), military operations are transitioning towards knowledge-centric warfare (KCW), based on artificial intelligence. Consequently, the military places significant emphasis on integrating advanced information and communication technologies (ICT) to establish reliable C4I (Command, Control, Communication, Computer, Intelligence) systems. This research emphasizes the need to apply data mining techniques to analyze and evaluate various aspects of C4I systems, including enhancing combat capabilities, optimizing utilization in network-based environments, efficiently distributing information flow, facilitating smooth communication, and effectively implementing knowledge sharing. Data mining serves as a fundamental technology in modern big data analysis, and this study utilizes it to analyze real-world cases and propose practical strategies to maximize the efficiency of military command and control systems. The research outcomes are expected to provide valuable insights into the performance of C4I systems and reinforce knowledge-centric warfare in contemporary military operations.

Exploring the 4th Industrial Revolution Technology from the Landscape Industry Perspective (조경산업 관점에서 4차 산업혁명 기술의 탐색)

  • Choi, Ja-Ho;Suh, Joo-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.47 no.2
    • /
    • pp.59-75
    • /
    • 2019
  • This study was carried out to explore the 4th Industrial Revolution technology from the perspective of the landscape industry to provide the basic data necessary to increase the virtuous circle value. The 4th Industrial Revolution, the characteristics of the landscape industry and urban regeneration were considered and the methodology was established and studied including the technical classification system suitable for systematic research, which was selected as a framework. First, the 4th Industrial Revolution technology based on digital data was selected, which could be utilized to increase the value of the virtuous circle for the landscape industry. From 'Element Technology Level', and 'Core Technology' such as the Internet of Things, Cloud Computing, Big Data, Artificial Intelligence, Robot, 'Peripheral Technology', Virtual or Augmented Reality, Drones, 3D 4D Printing, and 3D Scanning were highlighted as the 4th Industrial Revolution technology. It has been shown that it is possible to increase the value of the virtuous circle when applied at the 'Trend Level', in particular to the landscape industry. The 'System Level' was analyzed as a general-purpose technology, and based on the platform, the level of element technology(computers, and smart devices) was systematically interconnected, and illuminated with the 4th Industrial Revolution technology based on digital data. The application of the 'Trend Level' specific to the landscape industry has been shown to be an effective technology for increasing the virtuous circle values. It is possible to realize all synergistic effects and implementation of the proposed method at the trend level applying the element technology level. Smart gardens, smart parks, etc. have been analyzed to the level they should pursue. It was judged that Smart City, Smart Home, Smart Farm, and Precision Agriculture, Smart Tourism, and Smart Health Care could be highly linked through the collaboration among technologies in adjacent areas at the Trend Level. Additionally, various utilization measures of related technology applied at the Trend Level were highlighted in the process of urban regeneration, public service space creation, maintenance, and public service. In other words, with the realization of ubiquitous computing, Hyper-Connectivity, Hyper-Reality, Hyper-Intelligence, and Hyper-Convergence were proposed, reflecting the basic characteristics of digital technology in the landscape industry can be achieved. It was analyzed that the landscaping industry was effectively accommodating and coordinating with the needs of new characters, education and consulting, as well as existing tasks, even when participating in urban regeneration projects. In particular, it has been shown that the overall landscapig area is effective in increasing the virtuous circle value when it systems the related technology at the trend level by linking maintenance with strategic bridgehead. This is because the industrial structure is effective in distributing data and information produced from various channels. Subsequent research, such as demonstrating the fusion of the 4th Industrial Revolution technology based on the use of digital data in creation, maintenance, and service of actual landscape space is necessary.