• Title/Summary/Keyword: 사물제어

Search Result 466, Processing Time 0.031 seconds

Architecture Model of IOT Based Smart Animal Farms in Pakistan (파키스탄에서 IOT에 기반한 스마트 동물 농장의 아키텍처 모델)

  • Mateen, Ahamed;Zhu, Qingsheng;Afsar, Salman;Nazeer, Farah
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.43-52
    • /
    • 2018
  • Livestock production is the second largest economic activity of Pakistan's rural population, more specifically; sixty-seven percent of Pakistan's total population that live in rural areas sources their income from livestock activities. As this subsector of agriculture within rural Pakistan is so critical to Pakistan's economy it is especially important to further develop the sector through the introduction of cost effective, efficient, and practical technologies. In an effort to improve such an important sector within the agriculture sector in Pakistan research has been carried out to better understand the capabilities and feasibility of leveraging Internet of Things based technologies, such as, microprocessors and microcontrollers within Pakistan's livestock production and management. The internet of Things can potentially allow for the scaling of small-scale rural livestock production to larger operations through cost effective and efficient livestock management through the application of IoT technologies. This paper discusses the architecture models of IoT based smart animal farms and delves into the pitfalls and advantages of applying IoT technologies in this sector. In this work we will explore the cheap sensors to monitor the internal activities of cattle farm with the aim of using these sensors as part of system to detect the important operations that need on the time response. This system should provide the feed and water as required, and control the temperature in sheds to protect the cattle being ill and on heat, and humidity level .internet connection used to connect these devices with smartphones or computers. In this paper we proposed the architecture model of IoT based smart animal farm.

A Web-based Monitoring of Electrical Energy Consumption and Data Analysis of Smart Farm Facilities (스마트팜 전기 사용에 대한 웹기반 실시간 모니터링 시스템 운영 및 전력사용량 분석)

  • Lee, Mu Yeol;Sim, Sojeong;Kim, Eun-jeong;Han, Young-Soo
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.366-375
    • /
    • 2022
  • The monitoring of electricity consumption using Internet of Things (IoT) technology is attracting attention as a technology to reduce operation costs of smart farms. In this study, we propose a method to apply a real-time electrical consumption monitoring system (the e-Gauge system) and utilization of the collected data real-time while a melon-producing smart farm is in operation. For this purpose, the electrical consumption data for the individual smart-farm facilities such as boilers, nutrient distribution systems, automatic controllers, circulation fans, boiler controllers, and other IoT-related utilities were collected during three months of melon cultivation period. By using the monitoring results, the electrical energy consumption pattern was analyzed as an example, and necessary considerations needed to optimally utilize the measurement data were suggested. This paper will be useful in lowering the technological implementation barriers for new researchers to build a electrical consumption monitoring system and reducing trial and errors in the usage of the generated data.

Introduction to Soil-grondwater monitoring technology for CPS (Cyber Physical System) and DT (Digital Twin) connection (CPS 및 DT 연계를 위한 토양-지하수 관측기술 소개)

  • Byung-Woo Kim;Doo-Houng Choi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.14-14
    • /
    • 2023
  • 산업발전에 따른 인구증가, 기후위기에 따른 가뭄 및 물 부족심화, 그리고 수질오염 등은 2015년 제79차 UN총회의 물 안보측면에서 국제사회의 물 분야 위기관리를 위해 2030년을 지속가능한 발전 목표(Sustainable Development Goals)로 하였다. 또한, 현재 물 산업은 빠르게 성장하고 있으며, 2016년 세계경제포럼(World Economic Forum) 의장 클라우스 슈밥(Klaus Schwab)부터 주창된 제4차 산업혁명로 인해 현재 물 산업의 패러다임 또한 급속히 변화하고 있다. 이는 컴퓨터를 기반으로 하는 CPS(Cyber Physical System) 및 DT(Digital Twin) 연계 분석방식의 혁신을 일컫는다. 2002년경에 DT의 기본개념이 제시되었고, 2006년경에는 Embedded System에서의 DT와 같은 개념으로 CPS의 용어가 등장했다. DT는 현실세계에 존재하는 사물, 시스템, 환경 등을 S/W시스템의 가상공간에 동일하게 모사(Virtualization) 및 모의(Simulation)할 수 있도록 하고, 모의결과를 가상시스템으로 현실세계를 최적화 체계 구현 기술을 말한다. DT의 6가지 기능은 ① 실제 데이터(Live Data), ② 모사, ③ 분석정보(Analytics), ④ 모의, ⑤ 예측(Predictions), ⑥ 자동화(Automation) 이다. 또한, CPS는 대규모 센서 및 액추에이터(Actuator)를 가지는 물리적 요소와 이를 실시간으로 제어하는 컴퓨팅 요소가 결합된 복합시스템을 말한다. CPS는 물리세계에서 발생하는 변화를 감지할 수 있는 다양한 센서를 통해 환경인지 기능을 수행한다. 센서로부터 수집된 정보와 물리세계를 재현 및 투영하는 고도화된 시스템 모델들을 기반으로 사이버 물리공간을 인지·분석·예측할 수 있다. CPS의 6가지 구성요소는 ① 상호 운용성(Interoperability), ② 가상화(Virtualization), ③ 분산화(Decentralization), ④ 실시간(Real-time Capability), ⑤ 서비스 오리엔테이션(Service Orientation), ⑥ 모듈화(Modularity)이다. DT와 CPS는 본질적으로 같은 목적, 내용, 그리고 결과를 만들어내고자 하는 같은 종류의 기술이라고 할 수 있다. CPS 및 DT는 물리세계에서 발생하는 변화를 감지할 수 있으며, 토양-지하수 센서를 포함한 관측기술을 통해 환경인지 기능을 수행한다. 지하수 관측기술로부터 수집된 정보와 물리세계를 재현 및 투영하는 고도화된 시스템 모델들을 기반으로 사이버 물리공간 및 디지털 트윈 공간을 인지·분석·예측할 수 있다. CPS 및 DT의 기본 요소들을 실현시키는 것은 양질의 데이터를 모니터링할 수 있는 정확하고 정밀한 1차원 연직 프로파일링 관측기술이며, 이를 토대로 한 수자원 관련 빅데이터의 증가, 빅데이터의 저장과 분석을 가능하게 하는 플랫폼의 개발이다. 본 연구는 CPS 및 DT 기반 토양수분-지하수 관측기술을 이용한 지표수-지하수 연계, 지하수 순환 및 관리, 정수 운영 및 진단프로그램 개발을 위한 토양수분-지하수 관측장치를 지하수 플랫폼 동시성과 디지털 트윈 시뮬레이터 시스템 개발 방향으로 제시하고자 한다.

  • PDF

Design of ICT based Protected Horticulture for Recovering Natural Disaster (ICT기반 시설원예 재해 경감장치 설계)

  • Lee, Meong-Hun;Yoe, Hyun
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.6 no.10
    • /
    • pp.373-382
    • /
    • 2016
  • Under the Agricultural technology is influenced from climate that is requisite of seasonal. So this system will cover the problems and develop the agricultural industry as well. So far, the agricultural industry is developing however, it has the points of the weakness because of natural disasters such as wind risk and heavy snow. This paper designs system to change vinyl on the greenhouse. This is a preliminary study for the real-time feedback control of greenhouse. The study developed a wireless IoT sensor system based on authentic technology capacities, to integrate with the protected horticulture Management System. These system was used to evaluate the levels of the snow cover and wind through IoT devices. The existing greenhouse uses the warm water to clear snow or to change methods. This system will recover by changing the vinyl which is covered outside of the greenhouse. The points of the system is changing vinyl to spin pipe. It is contained extra vinyl. The effects of this system are minimized labor protected crops from natural disasters. For this purpose, the study first developed a wireless IoT sensor unit that integrates an MEMS device and wireless communication module. Also, the study developed an operating program that enables real-time response measurement. It will help operational and maintenance greenhouse as a result.

Development of crop harvest prediction system architecture using IoT Sensing (IoT Sensing을 이용한 농작물 수확 시기 예측 시스템 아키텍처 개발)

  • Oh, Jung Won;Kim, Hangkon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.6
    • /
    • pp.719-729
    • /
    • 2017
  • Recently, the field of agriculture has been gaining a new leap with the integration of ICT technology in agriculture. In particular, smart farms, which incorporate the Internet of Things (IoT) technology in agriculture, are in the spotlight. Smart farm technology collects and analyzes information such as temperature and humidity of the environment where crops are cultivated in real time using sensors to automatically control the devices necessary for harvesting crops in the control device, Environment. Although smart farm technology is paying attention as if it can solve everything, most of the research focuses only on increasing crop yields. This paper focuses on the development of a system architecture that can harvest high quality crops at the optimum stage rather than increase crop yields. In this paper, we have developed an architecture using apple trees as a sample and used the color information and weight information to predict the harvest time of apple trees. The simple board that collects color information and weight information and transmits it to the server side uses Arduino and adopts model-driven development (MDD) as development methodology. We have developed an architecture to provide services to PC users in the form of Web and to provide Smart Phone users with services in the form of hybrid apps. We also developed an architecture that uses beacon technology to provide orchestration information to users in real time.

Edge to Edge Model and Delay Performance Evaluation for Autonomous Driving (자율 주행을 위한 Edge to Edge 모델 및 지연 성능 평가)

  • Cho, Moon Ki;Bae, Kyoung Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.191-207
    • /
    • 2021
  • Up to this day, mobile communications have evolved rapidly over the decades, mainly focusing on speed-up to meet the growing data demands of 2G to 5G. And with the start of the 5G era, efforts are being made to provide such various services to customers, as IoT, V2X, robots, artificial intelligence, augmented virtual reality, and smart cities, which are expected to change the environment of our lives and industries as a whole. In a bid to provide those services, on top of high speed data, reduced latency and reliability are critical for real-time services. Thus, 5G has paved the way for service delivery through maximum speed of 20Gbps, a delay of 1ms, and a connecting device of 106/㎢ In particular, in intelligent traffic control systems and services using various vehicle-based Vehicle to X (V2X), such as traffic control, in addition to high-speed data speed, reduction of delay and reliability for real-time services are very important. 5G communication uses high frequencies of 3.5Ghz and 28Ghz. These high-frequency waves can go with high-speed thanks to their straightness while their short wavelength and small diffraction angle limit their reach to distance and prevent them from penetrating walls, causing restrictions on their use indoors. Therefore, under existing networks it's difficult to overcome these constraints. The underlying centralized SDN also has a limited capability in offering delay-sensitive services because communication with many nodes creates overload in its processing. Basically, SDN, which means a structure that separates signals from the control plane from packets in the data plane, requires control of the delay-related tree structure available in the event of an emergency during autonomous driving. In these scenarios, the network architecture that handles in-vehicle information is a major variable of delay. Since SDNs in general centralized structures are difficult to meet the desired delay level, studies on the optimal size of SDNs for information processing should be conducted. Thus, SDNs need to be separated on a certain scale and construct a new type of network, which can efficiently respond to dynamically changing traffic and provide high-quality, flexible services. Moreover, the structure of these networks is closely related to ultra-low latency, high confidence, and hyper-connectivity and should be based on a new form of split SDN rather than an existing centralized SDN structure, even in the case of the worst condition. And in these SDN structural networks, where automobiles pass through small 5G cells very quickly, the information change cycle, round trip delay (RTD), and the data processing time of SDN are highly correlated with the delay. Of these, RDT is not a significant factor because it has sufficient speed and less than 1 ms of delay, but the information change cycle and data processing time of SDN are factors that greatly affect the delay. Especially, in an emergency of self-driving environment linked to an ITS(Intelligent Traffic System) that requires low latency and high reliability, information should be transmitted and processed very quickly. That is a case in point where delay plays a very sensitive role. In this paper, we study the SDN architecture in emergencies during autonomous driving and conduct analysis through simulation of the correlation with the cell layer in which the vehicle should request relevant information according to the information flow. For simulation: As the Data Rate of 5G is high enough, we can assume the information for neighbor vehicle support to the car without errors. Furthermore, we assumed 5G small cells within 50 ~ 250 m in cell radius, and the maximum speed of the vehicle was considered as a 30km ~ 200 km/hour in order to examine the network architecture to minimize the delay.