• Title/Summary/Keyword: 사면체 공간

Search Result 51, Processing Time 0.027 seconds

$LiZnBO_3$: Crystal Structure ($LiZnBO_3$ : 결정구조)

  • Chang, Ki Seog
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.3
    • /
    • pp.251-255
    • /
    • 2001
  • The structure of the lithium zinc borate LiZnBO3 has been established by single-crystal X-ray diffraction methods. It crystallizes in the triclinic space group P1(Z=2), with unit-cell parameters - $a=5.0915(9)\AA$, $b=5.059(1)\AA$, $c=6.156(1)\AA$, $V=120.6(1)\AA3$ , $\alpha=65.81(1)^{\circ}$, $\beta=65.56(1)^{\circ}$ and $\gamma=59.77(1)^{\circ}$. The structure was determined from 704 unique reflections and refined to the final residuals R=0.039 and wR=0.056. It is characterized by an association of BO3 triangles and LiO4 and ZnO4 tetrahedra. The Li and Zn atoms are disordered around the average positions between Li1 and Li2 atoms or between Zn1 and Zn2 atoms. The disorder can be described by four half-occupied positions about Li1, Li2, Zn1 and Zn2 atoms.

  • PDF

Structure Refinement of $Nd_3Ba_5Co_4O_{15}$ Phase by Rietveld Method (Rietveld법에 의한 $Nd_3Ba_5Co_4O_{15}$상의 정밀화)

  • 이재열;송수호
    • Korean Journal of Crystallography
    • /
    • v.9 no.1
    • /
    • pp.48-52
    • /
    • 1998
  • The new Nd3Ba5Co4O15 phase was synthesized with Nd2O3, BaCO3, and Co3O4 by solid state reaction at 1200℃ with intermittent grinding. The crystal structure of Nd3Ba5Co4O15 has been refined on X-ray diffraction powder data by means of Rietveld method. The starting model was based on the Nd3.43Ba4.42Co2.23Al1.77O15 structure. The crystal system was hexagonal, space group P63mc(186), a=11.629(3) Å, c=6.842(2) Å. Final R values were Rwp=0.097 and Rp=0.068. The structure consists of clusters of CoVICoIV3O15 in which a CoVI octahedron shares corners with 3CoIV tetrahedra.

  • PDF

A Study on the Lateral Earthpressure at Behind Structure for Backfill by Sand (구조물 배면에 사질토 되메움시 유발되는 수평토압에 관한연구)

  • Lee, Sang-Duk;Kang, Se-Gu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.4
    • /
    • pp.11-18
    • /
    • 2011
  • In this study, the reinforcing effect of geogrids in the narrow backfill by sand was experimentally studied. In the model tests, the size of space and the slope of the cut off slope were varied out. The resultant and the distribution of lateral earth pressure were measured. Width of backfill space varied 10 cm, 20 cm, 30 cm at the lower wall level and angle of the cut off slope varied $90^{\circ}$, $75^{\circ}$, $60^{\circ}$. Geogrids were installed in the backfill. Measured results showed that the distribution of the lateral earth pressure due to the narrow backfill developed in a arching shape. And the earth pressure was reduced due to the reinforcement of the backfill by geogrid. geogrid helps reduction of lateral earth pressure.

Hydro-Mechanical Modeling of Fracture Opening and Slip using Grain-Based Distinct Element Model: DECOVALEX-2023 Task G (Benchmark Simulation) (입자기반 개별요소모델을 이용한 암석 균열의 수리역학 거동해석: 국제공동연구 DECOVALEX-2023 Task G (Benchmark Simulation))

  • park, Jung-Wook;Park, Chan-Hee;Lee, Changsoo
    • Tunnel and Underground Space
    • /
    • v.31 no.4
    • /
    • pp.270-288
    • /
    • 2021
  • We proposed a numerical method to simulate the hydro-mechanical behavior of rock fracture using a grain-based distinct element model (GBDEM) in the paper. As a part of DECOVALEX-2023 Task G, we verified the method via benchmarks with analytical solutions. DECOVALEX-2023 Task G aims to develop a numerical method to estimate the coupled thermo-hydro-mechanical processes within the crystalline rock fracture network. We represented the rock sample as a group of tetrahedral grains and calculated the interaction of the grains and their interfaces using 3DEC. The micro-parameters of the grains and interfaces were determined by a new methodology based on an equivalent continuum approach. In benchmark modeling, a single fracture embedded in the rock was examined for the effects of fracture inclination and roughness, the boundary stress condition and the applied pressure. The simulation results showed that the developed numerical model reasonably reproduced the fracture slip induced by boundary stress condition, the fracture opening induced by fluid injection, the stress distribution variation with fracture inclination, and the fracture roughness effect. In addition, the fracture displacements associated with the opening and slip showed good agreement with the analytical solutions. We expect the numerical model to be enhanced by continuing collaboration and interaction with other research teams of DECOVALEX-2023 Task G and validated in further study experiments.

Crystallographic and Magnetic Properties of Brownmillerite Ca1-xSrxFeO2.5(x=0, 0.3, 0.5, 0.7, 1.0) (Brownmillerite Ca1-xSrxFeO2.5(x=0, 0.3, 0.5, 0.7, 1.0)의 결정학적 및 자기적 성질에 관한 연구)

  • Yoon, Sung-Hyun;Yang, Ju-Il;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.2
    • /
    • pp.76-82
    • /
    • 2004
  • Crystallographic and magnetic properties for Brownmillerite-type oxides $Ca_{1-x}$Sr$_{x}$FeO$_{2.5}$ (x = 0, 0.3, 0.5, 0.7, 1.0) were investigated using x-ray diffraction (XRD) and Mossbauer spectroscopy. Polycrystalline samples were prepared by conventional solid-state reaction method. Information on exact crystalline structures, lattice parameters, bond lengths and bond angles were obtained by refining their XRD profiles using a Rietveld method. The crystal structures were found to be all orthorhombic with space group Icmm (x = 0, 0.3) and Icmm (x = 0.5, 0.7, 1.0) The lattice parameters increased monotonically with increasing Sr concentration. Both the tetrahedral and the octahedral sites were considerably distorted and elongated along b-axis. While bond lengths and bond angles O-Fe-O tend to increase minutely with the increase of Sr content, bond angles Fe-O-Fe decreased accordingly. The Mossbauer spectra showed two sets of sharp sextets originating from ferric ions occupying the tetrahedral and the octahedral sites under the magnetic transition temperature T$_{N}$. Regardless of the compositions x, the electric quadrupole splittings were -0.3 mm/s and 0.4 mm/s for the octahedral and the tetrahedral site, respectively. Above T$_{N}$, the Mossbauer spectra showed the paramagnetic doublets whose electric quadrupole splittings were about 1.6 mm/s, irrespective of compositions x. T$_{N}$ was found to decrease monotonically with the increase of Sr concentration. Ratios of absorption area for the two sites were almost 1:1 up to as high as 0.95 T$_{N}$ for all x. The result of the Debye temperature indicated that the inter-atomic binding force for the Fe atoms in the tetrahedral site was stronger than that for the octahedral site.hedral site.

Crystallographic Studies of Dehydrated Zeolite-X Reacting with Rubidium Vapor (루비듐 증기로 처리한 탈수한 제올라이트 X의 결정학적 연구)

  • Han, Young Wook
    • Journal of the Mineralogical Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.116-121
    • /
    • 1993
  • A single crystla of zeolite $Na_{78}Rb_{28}-X$ (approximate composition) was prepared by exposing $Na_{92}-X$ at $350^{\circ}C$ to 0.1 Torr of rubidium vapor, and its structure was determined by single-crystal x-ray diffraction methods in the cubic space group, Fd3, ${\alpha}=25.045(4){\AA}$. The structure was refined to the final error indices $R_1=0.082$ and $R_2=0.084$ with 353 for which I>$3{\sigma}(I)$. Only about 28 of the 92 $Na^+$ ions per unit cell were reduced and only about 14 of the 28 $Na^0$ atoms produced were retained within the zeolite. A $Na_5{^{4+}}$ cluster is present within each sodalite cavity. It is a centered tetrahedron (like $CH_4$) with bond $length=2.80(2){\AA}$ and angle tetrahedral by symmetry, and shows the full symmetry of its site. $T_d$, at the center of the sodalite cavity. Each of the four terminal atoms of the $Na_5{^{4+}}$ cluster bond to three framework oxygens at $2.36(2){\AA}$. At the centers of some double 6-rings are sodium atoms which bridge linearly between $Na_5{^{4+}}$ clusters to form agglomerations such as short zig-zag chains $Na_5{^{4+}}$ clusters. Delocalized electrons, located primarily on the sodiums at centers of the sodalite and (likely) double-six-ring cavities, contribute to the stability of the clusters.

  • PDF

Inverse characterization method for color gamut extension in multi-color printer (색역 확장을 위한 멀티 칼라 프린터의 역 특성화 방법)

  • Jang, In-Su;Son, Chang-Hwan;Park, Tae-Yong;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.2 s.314
    • /
    • pp.46-54
    • /
    • 2007
  • In current printer industry, four or more colorants are added for color gamut extension because the gamut of printer is smaller than other devices. However, these additional colorants make a redundancy problem that several combinations of colorants reproduced same color stimulus in colorimetric inverse characterization process. Thus, we propose a method of colorimetric inverse characterization using color correlation between colorant's amount. First, for analyzing the combination of colorants which represent the same color stimulus, we estimate the color stimulus for all combination of colorants by Cellular Yule-Nielsen Spectral Neugebauer printer model. The combination of colorants which has higher color correlation factor comparing combinations of colorant around itself in color space is selected. It can reduced the color difference from the tetrahedral interpolation process which is estimation of the output value(colorants combination) for arbitrary input(color stimulus). The selected combinations of colorants and their color stimulus are stored to the lookup table. In experiment, the CMYKGO printer was used. As a result, the dark region of color gamut was extended and the color tone was more naturally represented.

Characteristics of Hydrogen Storage in Ti-Cr-Mo and Ti-Cr-V bcc Alloys (Ti-Cr-Mo계 및 Ti-Cr-V계 bcc 합금의 수소저장특성에 관한 연구)

  • You, J.H.;Cho, S.W.;Park, C.N.;Choi, J.
    • Journal of Hydrogen and New Energy
    • /
    • v.16 no.2
    • /
    • pp.122-129
    • /
    • 2005
  • The characteristics of hydrogen storage have been investigated in the Ti-Cr-Mo and Ti-Cr-V ternary alloys with bcc structure. The alloys were melted by arc furnace and remelted 4-5 times for homogeneity. The lattice parameters, microstructures and phases of the alloys were examined by SEM, EDX and XRD, and the Pressure-Composition isotherms of the alloys were measured. From these data the relationship of the maximum and effective hydrogen storage capacities vs. chemical composition, lattice parameter and the radius of tetrahedral site were analyzed and discussed. The results showed that all of these alloy, in the range of the this study, had mainly bcc solid solutions with small amount of Ti segregation due to a lower melting point of Ti compared with other elements. Lattice parameters of the alloys were very near to the atomic average values of lattice parameters of the constituent elements. It was also found that maximum hydrogen storage capacities of the Ti-Cr-Mo alloys increased with increasing Ti content and the radius of tetrahedral site but the effective hydrogen storage capacities decreased after showing the maximum. The hydrogen storage capacities of the Ti-Cr-V alloys were almost same even though the V contens were quite different from alloy to alloy and this could be attributed to the almost same Ti/Cr ratio of the alloys. The maximum effective hydrogen storage capacity of the Ti-Cr-Mo alloys was revealed at Ti content of about 40${\sim}$50 at% and radius of tetrahedral site of 0.43${\sim}$0.45 nm. The Ti-Cr-V alloys showed the hydrogen storage capacities of 3.0 wt% and effective hydrogen storage capacities of 1.5 wt%.

Synthesis and Crystal Structure of Yttria-Stabilized Zirconia (이트리아를 첨가한 저코니아의 합성과 결정구조)

  • Kim, Won-Sa;Suh, Il-Hwan;Bak, Ro-Hak;Kim, Moon-Jib;Kim, Huhn-Jun;Lee, Chang-Hee;Kim, Yong-Che;Seong, Baek-Seok;Lee, Jeong-Soo;Shim, Hae-Seop;Kim, Yi-Kyung;Lee, Jin-Ho
    • Journal of the Korean earth science society
    • /
    • v.18 no.6
    • /
    • pp.553-558
    • /
    • 1997
  • Colorless and transparent cubic zirconia($Zr_{0.73}Y_{0.27}O_{1.87}$) crystal has been synthesized by the Bridgman-Stock-bager method(also called Skull melting method). $Y_2O_3$ is used as stabilizer. The crystal shows a vitreous luster with a slight oily appearance. Under a polarizing microscope, it shows isotropic nature with no appreciable anisotropism. Mohs hardness value is measured to be $8{\sim}8\frac{1}{2}$ and specific gravity 5.85. Under ultraviolet light it shows a faint white glow. The crystal structure of yttria stabilized zirconia was determined, using single crystal X-ray diffraction techniques to be a cubic symmetry, space group $Fm\overline{3}m({O^5}_h)$ with $a=5.1552(5){\AA}$, $V=136.99(5){\AA}^3$, Z=4, and R=0.0488 for 29 unique reflections. Each zirconium atom is at the center of eight oxygen atoms situated at the corners of a surrounding cube and each oxygen atom is at the center of a tetrahedron of zirconium atoms. So a coordination of 8:4 holds in the structure.

  • PDF

The Crystal and Molecular Structure of Sulfaguanidine Monohydrate (Sulfaguanidine Monohydrate의 結晶 및 分子構造)

  • Koo, Chung-Hoe;Kim, Hoon-Sup;Shin, Whan-Chul;Choe, Chu-Hyn
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.2
    • /
    • pp.97-109
    • /
    • 1974
  • The crystal and molecular structure of sulfaguanidine monohydrate, $C_7H_{10}N_4O_2S{\cdot}H_2O$, was determined from visually estimated intensity data from Weissenberg photographs. The crystal data are monoclinic, space group $P2_1$/c with four molecules in a unit cell of dimensions, ${\alpha}=7.57{\pm}0.03,\;b=5.44{\pm}0.02,\;c=24.76{\pm}0.06{\AA},\;{\beta}=91.0{\pm}0.2^{\circ}$. The structure has been solved by an interpretation of a Patterson map and with a help of a direct procedure on a projection. The parameters were refined isotropically by block-diagonal least-squares methods using 1542 observed independent reflections to give R = 0.14. By hydrogen bonding a guanidyl nitrogen of a sulfaguanidine molecule is linked to the sulfonyl oxygens of the other molecules indirectly through two different water molecules. The role of water molecule is both a donor and an acceptor in hydrogen-bonding formation and these hydrogen bonds are tetrahedrally oriented. The hydrogen-bonding networks form infinite molecular layers parallel to (001) plane.

  • PDF