• Title/Summary/Keyword: 사면체 공간

Search Result 51, Processing Time 0.018 seconds

The Analogical Discovery from Inscribed and Circumscribed Circles of a Triangle to Inscribed and Circumscribed Spheres of a Tetrahedron Through the Analytical Method (분석적 방법을 통한 삼각형의 내접원, 외접원에서 사면체의 내접구, 외접구로의 유추적 발견)

  • Kim, Keun-Bae;Choi, Ok-Whan;Park, Dal-Won
    • Journal of the Korean School Mathematics Society
    • /
    • v.20 no.4
    • /
    • pp.445-464
    • /
    • 2017
  • This study targeting 10 high school 3rd grade students who have studied space figures in natural sciences track analyzes the process of analogical discovery from the construction of inscribed and circumscribed circles of a triangle to that of inscribed and circumscribed spheres of a tetrahedron through the analytical method using Geogebra. The subjects are divided into two groups of five, the experimental group consisting of those who have experienced analytical method and the comparative group consisting of those who haven't. This research analyzing the process of constructing inscribed and circumscribed spheres of a tetrahedron. Although students of both groups all have an accurate preliminary knowledge of inscribed and circumscribed circles of a triangle, they have difficulty in constructing inscribed and circumscribed spheres of a tetrahedron. However, the students of experimental group who have studied the constructing process of inscribed and circumscribed circles of a triangle in reverse using analytical method and Geogebra can perform analogical discovery finding out the way to construct inscribed and circumscribed spheres of a tetrahedron using analogy by themselves. They can control and explore space figures by visualization. Also, they can immediately examine and provide feedback on the analogizing process of their own. In addition, the process affects the attitude of students toward mathematics positively as well as gives validity to the result of analogy.

  • PDF

Stability Analysis of Embankment Slopes Consisting of Rock Fragments (암석 버력으로 성토한 사면의 안정성 해석)

  • 김치환
    • Tunnel and Underground Space
    • /
    • v.12 no.2
    • /
    • pp.83-91
    • /
    • 2002
  • Stability analysis of rocky embankment slopes is done by both the limit equilibrium method and the finite difference method. The height or the rocky embankment is approximately 40 m and the side slope is 1 vertical to 1.5 horizontal. The cohesion and internal friction angle of rock debris are assumed zero and 43$^{\circ}$, respectively. For finite difference analysis, strength reduction method is used to calculate the saft factor of the slope. As a result, the safety factor of the slope is discovered to be 1.4 by using either methods. Considering that the design criteria of the safety factor is 1.3, it can be judged that the rock fragments embankment slope is in a stable state.

Effect of Joint Persistence on the Formation of Tetrahedral Block Inside an Underground Opening (절리 영속성이 사각 단면 지하공동에서의 사면체 블록 형성에 끼치는 영향)

  • Cho, Taechin
    • Tunnel and Underground Space
    • /
    • v.26 no.6
    • /
    • pp.475-483
    • /
    • 2016
  • A numerical analysis model capable of predicting the shape, the size and the potentiality of collapse of tetrahedral blocks considering the persistence obtained from the field survey of joint distribution around the underground excavation surface has been developed. Numerical functions of analyzing both the exposed trace distribution on the excavation surface and the formation of tetrahedral block controlled by the extent of joint surface have been established and linked to the previously developed three dimensional deterministic block analysis model. To illustrate the reliability of advanced numerical model the case of underground excavation in which the collapse of rock block had practically taken place was studied. Representative orientations of joint sets was determined based on the joint distribution pattern observed on the excavation surfaces. The formation of block on the roof of underground opening was analyzed to unveil the potential tetrahedral block the shape of which was very similar to the collapsed rock block. Mechanisms of collapse process has been also analyzed by considering the three dimensional shape of tetrahedral block.

Soil Moisture Measurements and Correlation Analysis to Understand the Runoff Generation Process for a Bumrunsa Hillslope of Sulmachun Watershed (설마천 범륜사 사면 유출과정의 이해를 위한 실측토양수분 상관도 분석)

  • Kim, Sang-Hyun;Kang, Mi-Jeong;Kwak, Yong-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.5
    • /
    • pp.351-362
    • /
    • 2011
  • The soil moisture measurements and correlation analysis are presented to improve understanding the hydrological process at the hillslope scale. The rainfall events is a main driver of soil moisture variation, and its stochastic characteristic need to be properly treated prior to the correlation analysis between soil moisture measurements. Using field measurements for two designated periods during the late summer and autumn seasons in 2007 obtained from the Bumrunsa hillslope located at the Sulmachun watershed, prewhitened correlation analysis were performed for 8, 14, 7 and 7 relationships representing the vertical, lateral, recharge and return flows, for two designated periods, respectively. The analysis indicated both temporal and spatial variation patterns of hydrological processes, which can be explained by the relative contribution of matrix and macropore flows and the impact of transect topography, respectively.

A Study on the Failure Cause of Large Scale Rock Slope in Limestone Quarries (석회석 광산에서 발생한 대규모 암반사면의 붕괴원인 분석에 관한 연구)

  • Lee, Sang-Eun;Kim, Hak-Sung;Jang, Yoon-Ho
    • Tunnel and Underground Space
    • /
    • v.24 no.4
    • /
    • pp.255-274
    • /
    • 2014
  • The target of this study is large scale rock slope collapsed by around 7 pm on August, 2012, which is located at ${\bigcirc}{\bigcirc}$ limestone quarries of Gangneung city, Gangwondo. The slope prior to the collapse is formed as the height of about 200 m and the average inclination of $45^{\circ}$. The estimated amount of the collapse is about $1,500,000m^3$ with respect to the slope after the collapse. Geotechnical and field investigations such as boring, geophysical prospecting, surface geological survey, geological lineaments, borehole imaging, metric 3D imaging, experimental and field test, mining work by year, and daily rainfall were performed to find the cause of rock slope failure. Various analyzes using slope mass rating, stereonet projection, limit equilibrium method, continuum and non-continuum model were conducted to check of the stability of the slope. It is expected that the cause of slope failure from the results of various analysis and survey is due to the combined factors such as topography, rainfall, rock type and quality, discontinuities, geo-structural characteristics as the limestone cavity and fault zones, but the failure of slope in case of the analysis without the limestone cavity is not occurred. Safe factor of 0.66 was obtained from continuum analysis of the slope considering the limestone cavity, so the ultimate causes of slope failure is considered to be due to the influence of limestone cavity developed along fault zone.

A Study on the Behavior of Cut and Cover Tunnel according to the Excavation Plane by Numerical Analysis (굴착사면 변화에 따른 복개 터널구조물의 역학적 거동에 관한 수치해석적 연구)

  • Bae, Gyu-Jin;Lee, Seok-Won;Lee, Gyu-Phil;Park, Si-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.1
    • /
    • pp.79-90
    • /
    • 2002
  • The structural analysis such as rigid frame analysis has been used for the design of cut and cover tunnel due to its simplicity and convenience. This analysis, however, could not account for the geometrical factors such as interface elements, slope of excavation plane, distance between lining and excavation plane, etc. To develop the analysis technique and design technology for the cut and cover tunnel, in this study, the numerical analyses considering not only geometrical but geotechnical factors are conducted. Especially, the effects on the mechanical behaviors of cut and cover tunnel due to the slope of excavation plane and the distance between lining and excavation plane are mainly focused in this study.

  • PDF

Real-Time GPU Technique for Extracting Mesh Isosurfaces from BCC Volume Datasets (BCC 볼륨 데이터로부터 실시간으로 메시 형태의 등가면을 추출하는 GPU 기법)

  • Kim, Hyunjun;Kim, Minho
    • Journal of the Korea Computer Graphics Society
    • /
    • v.26 no.4
    • /
    • pp.17-26
    • /
    • 2020
  • We present a real-time GPU(Graphic Processing Unit) marching tetrahedra technique that extracts isosurfaces in the indexed mesh format from BCC(Body Centered Cubic) volume datasets. Compared to classical marching tetrahedra, our method shows better performance with little memory overhead. Our technique is composed of five stages. In the first stage, which needs to be done only once, we build min/max blocks that is to be used for empty space skipping to boost the performance. Next, we extract active blocks that contain the current isovalue. In the next two stages, we extract the edges and cells that contain the isosurface and then the final triangular mesh is generated in the last stage. When applied 5123 or higher resolution volume dataset, our technique shows up to 5 times speed improvement compared to the classical marching tetrahedra algorithm.

A study on eccentric load acted on cut and cover tunnel by numerical approach (복개 터널구조물에 작용하는 편토압 고려를 위한 수치해석적 연구)

  • Bae, Gyu-Jin;Chung, Hyung-Sik;Lee, Gyu-Phil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.3
    • /
    • pp.227-239
    • /
    • 2003
  • For environment-friendly construction, cut-and-cover tunnels have been constructed, thereby leading to embankment slopes with a number of steps. The slopes cause eccentric load on concrete lining of the tunnel. Nevertheless, uniform vertical and horizontal earth pressures, which are determined by considering a self-weight of embankment and $K_0$, are routinely used in structural calculation. Distribution of the earth pressures applied to the lining will lead to a biased calculation far from the actual behavior of the lining. In this study, basic study, therefore, was performed to consider the eccentric load properly in design and analysis of a cut-and-cover tunnel. A method capable of considering the eccentric load in design was proposed and its applicability was numerically examined through a number of examples.

  • PDF

Crystallographic and Magnetic Properties of Li0.5Fe2.5-χRhχO4 by Using Applied Field Mossbauer Spectrometer (외부자기장 뫼스바우어 분광기를 이용한 Li0.5Fe2.5-χRhχO4의 자기적 성질과 결정학적 구조에 관한 연구)

  • Kang, Kun-Uk;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.6
    • /
    • pp.219-223
    • /
    • 2004
  • L $i_{0.5}$F $e_{2.5-{\chi}}$R $h_{\chi}$ $O_4$ ($\chi$ = 0.25, 0.50, 0.75, 1.00) has been prepared by solid state reaction. Crystallographic and magnetic properties were investigated by Mossbauer spectroscopy, SQUID magnetometry, and x-ray diffraction. The crystal structure is found to be a cubic spinel structure with space group Fd3m for all the samples. The lattice constant $a_{0}$ increases from 8.3365 $\AA$ to 8.3932 $\AA$ with increasing Rh concentration $\chi$. The migration of Li ion has been confirmed by x-ray patterns and the results of applied field Mossbauer analysis. The temperature dependence of the absorption area of each site was analyzed with the Debye model for the recoil-free fraction. The Debye temperature for the octahedral sites is almost as large as for the tetrahedral sites, thereby suggesting similar inter-atomic binding forces for the octahedral and the tetrahedral sites. The saturated magnetic moment and the Mossbauer spectra taken at 4.2 K under the applied field (6 T) show that the spin structure of L $i_{0.5}$F $e_{2.5-{\chi}}$R $h_{\chi}$ $O_4$ is compatible with the collinear Neel Model.

A study on the behavior of cut and cover tunnel by numerical analysis (수치해석 기법을 이용한 복개 터널구조물의 거동에 관한 연구)

  • Lee, Seok-Won;Lee, Gyu-Phil;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.1
    • /
    • pp.43-54
    • /
    • 2003
  • In the deign of cut and cover tunnel, the structural analysis such as rigid frame analysis has been used for its simplicity and convenience. The structural analysis, however, can not consider the geological and geotechnical factors such as soil arching effect. In this study, the dominant factors influencing the behavior of cut and cover tunnel such as interface element, slope of excavation plane, distance between slope and tunnel lining, and location of slope of covered soil, were investigated by the numerical analysis to develop the analysis technique and design technology. Based on the results, the variation of bending moment, shear stress, axial force and displacements were evaluated and analyzed for each factor.

  • PDF