• Title/Summary/Keyword: 사면구조 격자

Search Result 45, Processing Time 0.02 seconds

The Effect of Non Magnetic ion Substitution for the FeCr2-xMxS4(M=Ga, In) by Mossbauer Spectroscopy (비자성 이온 Ga, In이 치환된 유화물 스피넬의 뫼스바우어 분광학 연구)

  • Son, Bae-Soon;Kim, Sam-Jin;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.1
    • /
    • pp.6-10
    • /
    • 2006
  • The sulphur spinel $FeCr_{2-x}M_xS_4$(M=Ga, In) have been studied with Mossbauer spectroscopy, x-ray diffraction (XRD), and vibrating sample magnetometer. The XRB patterns for samples $FeCr_{2-x}M_xS_4$(M=Ga, In: x=0.1, 0.3) reveal a single phase, which the Ga and In ions are partially occupied to the tetrahedral (A) site. The Neel temperature for the Ga substituted samples increases from 180 to 188 K, with increase from x=0.1 to 0.3. While, it decreases from 173 to 160 K, for the In substituted samples of the x=0.1 and 0.3, respectively. The Mossbauer spectra were collected from 4.2 K to room temperature. We have analyzed the Mossbauer spectra using eight Lorentzian lines fitting method for the $FeCr_{2-x}In_xS_4$(x=0.1) at 4.2 K, yielding the 1311owing results; $H_{hf}=146.0kOe,\;{\Delta}E_Q=1.88mm/s,\;\theta=36^{\circ},\;\phi=0^{\circ},\;\eta=0.6$, and R=1.9. The Ga ions enter into the both sites octahedral (B) and tetrahedral (A), simultaneously the same amounts of Fe ions migrate from the A to the B site, this result is an agreement with XRD results, too. The ${\Delta}E_Q$ of the A and B site in Mossbauer spectra of the samples $FeCr_{2-x}Ga_xS_4$(x=0.3) are 0.83 and 2.94mm/s, respectively. While they are 0.56 and 2.36mm/s for the $FeCr_{2-x}In_xS_4$(x=0.3). It is noticeable that the ${\Delta}E_Q$ for the Ga doped samples are larger than that of the corresponding In doped samples, in spite of the larger ionic radius for In ions. The bond lengths of Cr-S, for the Ga and In doped samples (x=0.3) are found to be 2.41 and $2.43\;{\AA}$, respectively. We interpret that the larger covalence effect from the smaller bond length induces a large asymmetric charge distribution. Finally, it gives a large quadrupole interaction.

A Study on Distribution of Mössbauer Spectroscopy in Al Doped Garnet (Al을 치환한 Garnet의 Mössbauer분포 함수 연구)

  • Min, Byoung-Ki;Kim, Sam-Jin;Shim, In-Bo;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • Al$\^$3+/ substituted garnet Y$_3$Fe$\_$5-x/Al$\_$x/O$\_$12/ (x=0.0, 0.25, 0.5, 0.75, 1.0) was fabricated by sol-gel method. The crystallographic and magnetic properties of Y$_3$Fe$\_$5-x/Al$\_$x/O$\_$12/ have been studied with Mossbauer spectroscopy, x-ray diffraction (XRD), thermogravimetry analysis (TGA), differential thermal analysis (DTA), and vibrating samples magnetometer (VSM). The crystal structure of Y$_3$Fe$\_$5/O$\_$12/ is found to be a cubic with the lattice constant a$\_$0/= 12.381$\pm$0.005 $\AA$. The lattice constants a$\_$0/ decreases linearly from 12.381 to 12.304 A as the Al concentration (x) increases from x=0.0 to 1.0. Mossbauer spectra of measured at Y$_3$Fe$\_$5-x/A1$\_$x/O$\_$12/ various absorber temperatures of 13 to 600 K. Mossbauer spectrum for x = 0.0 is consist of well resolved two sets of six line patterns. While with increasing Al concentration outer sextet patters, which is originating from octahedral sites, broadens widely. These phenomena are interpreted in terms of random probability distributions of Fe$\^$3+/ and Al$\^$3+/ in tetrahedral site.

CEMS Study of Ferrite Films M0.2Fe2.8O4 (M =Mn, Ni, Cu) (페라이트 박막 M0.2Fe2.8O4(M=Mn, Ni, Cu)의 Mössbauer 분광학적 연구)

  • Park, Jae Yun;Kim, Kwang Joo
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.2
    • /
    • pp.46-50
    • /
    • 2014
  • The crystallographic properties and cationic distribution of $M_{0.2}Fe_{2.8}O_4$ (M =Mn, Ni, Cu) and $Fe_3O_4$ thin films prepared by sol-gel method have been investigated by X-ray diffraction (XRD) and conversion electron M$\ddot{o}$ssbauer spectroscopy (CEMS). The ionic valence, preferred site, and hyperfine field of Fe ions of the ferrites could be obtained by analyzing the CEMS spectra. The $M_{0.2}Fe_{2.8}O_4$ films were found to maintain cubic spinel structure as in $Fe_3O_4$ with the lattice constant slightly decreased for Ni substitution and increased for Mn and Cu substitution from that of $Fe_3O_4$. Analyses on the CEMS data indicate that $Mn^{2+}$ and $Ni^{2+}$ ions substitute octahedral $Fe^{2+}$ sites mostly, while $Cu^{2+}$ ions substitute both the octahedral and tetrahedral sites. The observed intensity ratio $A_B/A_A$ of the CEMS subspectra of the samples exhibited difference from the theoretical value. It is interpreted as due to the effect of the M substitution for A and B on the Debye temperature of the site. The relative line-broadening of the B-site CEMS subspectra can be explained by the dispersion of magnetic hyperfine fields due to random distribution of M cations in the B sites.

Crystallograpbic and Magnetic Properties of $Ni_{0.65}Zn_{0.35}Cu_{0.3}Fe_{1.7}O_4$ ($Ni_{0.65}Zn_{0.35}Cu_{0.3}Fe_{1.7}O_4$의 결정학적 및 자기적 특성 연구)

  • 김우철;김삼진;김철성;이승화
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.3
    • /
    • pp.136-142
    • /
    • 1999
  • $Ni_{0.65}Zn_{0.35}Cu_{0.3}Fe_{1.7}O_4$ has been studied with x-ray diffraction, Mossbauer spectroscopy, and vibrating sample magnetometer. The crystal structure is found to be a cubic spinel with the lattice constant $a_0=8.403{\AA}$. Mossbauer spectra of have been taken at various temperatures ranging from 12 K to 665 K. as the temperature increases toward $T_N$ a systematic line broadening effect in the Mossbauer spectrum is observed and interpreted to originate from different temperature dependencies of the magenetic hyperfine fields at various iron sites. Also, by using binomial distribution equation we obtained the hyperfine fields of tetrahedral[A] and octahedral sites[B], $H_{hf}(A)=470\;kOe,\; H_{hf}(B0)=495 \;kOe,\; H_{hf}(B1)=485\;kOe, \;H_{hf}(B2)=453\;kOe,\; H_{hf}(B3)=424\;kOe,\; H_{hf}(B4)=390\;kOe,\; H_{hf}(Bavr)=451\;kOe$ respectively at room temperature. The isomer shift indicates that the iron ions are ferric at tetrahedral[A] and octahedral sites[B], respectively. The Neel temperature is determined to be $T_N=665\;K$. The results of the VSM data gave the magnetic moment and coercivity values of $M_S=66\; emu/g\;and\;H_C=36\;Oe$.

  • PDF

Crystallographic and Magnetic Properties of Brownmillerite Ca1-xSrxFeO2.5(x=0, 0.3, 0.5, 0.7, 1.0) (Brownmillerite Ca1-xSrxFeO2.5(x=0, 0.3, 0.5, 0.7, 1.0)의 결정학적 및 자기적 성질에 관한 연구)

  • Yoon, Sung-Hyun;Yang, Ju-Il;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.2
    • /
    • pp.76-82
    • /
    • 2004
  • Crystallographic and magnetic properties for Brownmillerite-type oxides $Ca_{1-x}$Sr$_{x}$FeO$_{2.5}$ (x = 0, 0.3, 0.5, 0.7, 1.0) were investigated using x-ray diffraction (XRD) and Mossbauer spectroscopy. Polycrystalline samples were prepared by conventional solid-state reaction method. Information on exact crystalline structures, lattice parameters, bond lengths and bond angles were obtained by refining their XRD profiles using a Rietveld method. The crystal structures were found to be all orthorhombic with space group Icmm (x = 0, 0.3) and Icmm (x = 0.5, 0.7, 1.0) The lattice parameters increased monotonically with increasing Sr concentration. Both the tetrahedral and the octahedral sites were considerably distorted and elongated along b-axis. While bond lengths and bond angles O-Fe-O tend to increase minutely with the increase of Sr content, bond angles Fe-O-Fe decreased accordingly. The Mossbauer spectra showed two sets of sharp sextets originating from ferric ions occupying the tetrahedral and the octahedral sites under the magnetic transition temperature T$_{N}$. Regardless of the compositions x, the electric quadrupole splittings were -0.3 mm/s and 0.4 mm/s for the octahedral and the tetrahedral site, respectively. Above T$_{N}$, the Mossbauer spectra showed the paramagnetic doublets whose electric quadrupole splittings were about 1.6 mm/s, irrespective of compositions x. T$_{N}$ was found to decrease monotonically with the increase of Sr concentration. Ratios of absorption area for the two sites were almost 1:1 up to as high as 0.95 T$_{N}$ for all x. The result of the Debye temperature indicated that the inter-atomic binding force for the Fe atoms in the tetrahedral site was stronger than that for the octahedral site.hedral site.