• Title/Summary/Keyword: 사례 기반

Search Result 6,728, Processing Time 0.036 seconds

Prediction of KOSPI using Data Editing Techniques and Case-based Reasoning (자료편집기법과 사례기반추론을 이용한 한국종합주가지수 예측)

  • Kim, Kyoung-Jae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.6
    • /
    • pp.287-295
    • /
    • 2007
  • This paper proposes a novel data editing techniques with genetic algorithm (GA) in case-based reasoning (CBR) for the prediction of Korea Stock Price Index (KOSPI). CBR has been widely used in various areas because of its convenience and strength in compelax problem solving. Nonetheless, compared to other machine teaming techniques, CBR has been criticized because of its low prediction accuracy. Generally, in order to obtain successful results from CBR, effective retrieval of useful prior cases for the given problem is essential. However. designing a good matching and retrieval mechanism for CBR system is still a controversial research issue. In this paper, the GA optimizes simultaneously feature weights and a selection task for relevant instances for achieving good matching and retrieval in a CBR system. This study applies the proposed model to stock market analysis. Experimental results show that the GA approach is a promising method for data editing in CBR.

  • PDF

A Case-Specific Feature Weighting Method in Case-Based Reasoning (사례기반 추론에서 사례별 속성 가중치 부여 방법)

  • 이재식;전용준
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.10a
    • /
    • pp.391-398
    • /
    • 1999
  • 사례기반 추론을 포함한 Lazy Learning 방법들은 인공신경망이나 의사결정 나무와 같은 Eager Learning 방법들과 비교하여 여러 가지 상대적인 장점을 가지고 있다. 그러나 Lazy Learning 방법은 역시 상대적인 단점들도 가지고 있다. 첫째로 사례를 저장하기 위하여 많은 공간이 필요하며, 둘째로 문제해결 시점에서 시간이 많이 소요된다. 그러나 보다 심각한 문제점은 사례가 관련성이 낮은 속성들을 많이 가지고 있는 경우에 Lazy Learning 방법은 사례를 비교할 때에 혼란을 겪을 수 있다는 점이며, 이로 인하여 분류 정확도가 크게 저하될 수 있다. 이러한 문제점을 해결하기 위하여 Lazy Learning 방법을 위한 속성 가중치 부여 방법들이 많이 연구되어 왔다. 그러나 기존에 발표된 대부분의 방법들이 속성 가중치의 유효 범위를 전역적으로 하는 것들이었다. 이에 본 연구에서는 새로운 지역적 속성 가중치 부여 방법을 제안한다. 본 연구에서 제안하는 속성 가중치 부여 방법(CBDFW : 사례기반 동적 속성 가중치 부여)은 사례별로 속성 가중치를 다르게 부여하는 방법으로서 사례기반 추론의 원리를 속성 가중치 부여 과정에 적용하는 것이다. CBDFW의 장점으로서 (1) 수행 방법이 간단하며, (2) 논리적인 처리 비용이 기존 방법들에 비해 낮으며, (3) 신축적이라는 점을 들 수 있다. 본 연구에서는 신용 평가 문제에 CBDFW의 적용을 시도하였고, 다른 기법들과 비교에서 비교적 우수한 결과를 얻었다.

  • PDF

Hybridlnference Engine for System Diagnosis (진단 시스템을 위한 혼합형 추론 엔진)

  • Kim, Jin-Pyung;Lee, Gil-Jae;Kim, Moon-Hyun
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2005.05a
    • /
    • pp.171-176
    • /
    • 2005
  • 본 논문에서는 진단시스템의 추론성능을 향상시키기 위한 방법으로서, 사례 기반 추론을 통해서 규칙 기반 추론의 단점을 보완하여 성능을 향상시키는 혼합형 추론 모델을 제안한다. 본 모델의 특징은 규칙 기반 추론의 확장성 문제와 규칙화 할 수 없는 예외적인 상황에 대한 문제점을 사례 기반 추론에서 사례로 저장하여 규칙 기반 추론의 단점을 보완하는데 있다. 이런 두 모델의 문제점을 해결하는 과정은 첫째로, 문제에 따라 규칙기반추론 모듈의 베이스를 통해서 적절한 규칙을 적용 후 추론을 적용하여 근접한 해를 얻어낸다. 두 번째로, 규칙베이스에 저장되어 있지 않은 문제에 대해서는 사례 라이브러리를 검색하고 유사성 검사를 통해서 저장된 사례를 찾아 입력된 사례에 적용하여 문제를 해결한다. 셋째로, 해결된 문제에 대해서 수정작업을 통해 사례 라이브러리를 확장한다. 이와 같이 세 과정을 통해 본 논문에서 제안하는 방법론의 성과를 측정하기 위하여 정비 메뉴얼을 규칙화하여 규칙베이스를 구축하였고 전문가들의 경험적인 지식에 대해서는 사례라이브러리로 구축하였다. 또한 지식베이스를 통해서 진단을 수행하고 해결된 문제에 대해서 정확도 검사를 통해 진단의 정확성을 측정하여 혼합형추론엔진의 성능을 검증하였다.

  • PDF

Customized Knowledge Creation Framework using Context- and intensity-based Similarity (상황과 정보 집적도를 고려한 유사도 기반의 맞춤형 지식 생성프레임워크)

  • Sohn, Mye M.;Lee, Hyun-Jung
    • Journal of Internet Computing and Services
    • /
    • v.12 no.5
    • /
    • pp.113-125
    • /
    • 2011
  • As information resources have become more various and the number of the resources has increased, knowledge customization on the social web has been becoming more difficult. To reduce the burden, we offer a framework for context-based similarity calculation for knowledge customization using ontology on the CBR. Thereby, we newly developed context- and intensity-based similarity calculation methods which are applied to extraction of the most similar case considered semantic similarity and syntactic, and effective creation of the user-tailored knowledge using the selected case. The process is comprised of conversion of unstructured web information into cases, extraction of an appropriate case according to the user requirements, and customization of the knowledge using the selected case. In the experimental section, the effectiveness of the developed similarity methods are compared with other edge-counting similarity methods using two classes which are compared with each other. It shows that our framework leads higher similarity values for conceptually close classes compared with other methods.

Performance Improvement of Case-based Reasoning Using Fuzzy Clustering (피지 클러스터링을 이용한 사례기반 추론의 성능 개선)

  • 현우석
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.05a
    • /
    • pp.100-103
    • /
    • 2002
  • 사례 기반 추론(case-based reasoning)은 과거에 유사하게 수행된 적이 있는 사레를 유추하고, 유추된 사례의 해를 이용하여 현재의 문계를 해결하는 기법으로서 규칙 기반 추론과 함께 여러 분야에 이용되고 있다. 하지만 사례기반 추론시 사레베이스로부터의 유사성에 근거한 검색을 해야 하므로 사례베이스의 크기가 증가하게 되면 검색시간이 길어지게 되거나 적절하지 못한 사레가 조회될 수 있다 특히 사레베이스 내의 모든 사례에 대하여 유사도를 계산하게 되기 때문에 수행속도가 현저히 저하되는 문제점을 지니고 있다. 본 논문에서는 규칙 및 퍼지 클러스터링에 의한 사레기반추론을 이용한 E-FFIS(Enhanced-Fire Fighting Intelligent System)를 제안한다. 제안하는 시스템은 기존의 H-FFIS(Hybrid-Fire fighting Intelligent System)와 비교해 보았을 때 수행시간을 감소시키면서 정확성을 높이게 되었다.

  • PDF

Case-based Optimization Modeling (사례 기반의 최적화 모형 생성)

  • 장용식;이재규
    • Journal of Intelligence and Information Systems
    • /
    • v.8 no.2
    • /
    • pp.51-69
    • /
    • 2002
  • In the supply chain environment on the web, collaborative problem solving and case-based modeling has been getting more important, because it is difficult to cope with diverse problem requirements and inefficient to manage many models as well. Hence, the approach on case-based modeling is required. This paper provides a framework that generates a goal model based on multiple cases, modeling knowledge, and forward chaining and it also develops a search algorithm through sensitivity analysis to reduce the modeling effort.

  • PDF

사례기반추론 모델의 최근접 이웃 설정을 위한 Similarity Threshold의 사용

  • Lee, Jae-Sik;Lee, Jin-Cheon
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.11a
    • /
    • pp.588-594
    • /
    • 2005
  • 사례기반추론(Case-Based Reasoning)은 다양한 예측 문제에 있어서 성공적으로 활용되고 있는 데이터마이닝 기법 중 하나이다. 사례기반추론 시스템의 예측 성능은 예측에 사용되는 최근접이웃(Nearest Neighbor)을 어떻게 설정하느냐에 따라 영향을 받게 된다. 따라서 최근접 이웃을 결정짓는 k 값의 설정은 성공적인 사례기반추론 시스템을 구축하기 위한 중요 요인 중 하나가 된다. 최근접 이웃의 설정에 있어서 대부분의 선행 연구들은 고정된 k 값을 사용하는 사례기반추론 시스템은 k 값을 크게 설정할 경우 최근접 이웃 안에 주어진 오류를 일으킬 수 있으며, k 값이 작게 설정된 경우에는 유사 사례 중 일부만을 예측에 사용하기 때문에 예측 결과의 왜곡을 초래할 수 있다. 본 이웃을 결정함에 있어서 Similarity Threshold를 이용하는 s-NN 방법을 제안하였다. 본 연구의 실험을 위해 UCI(University of california, Irvine) Machine Learning Repository에서 제공하는 두 개의 신용 데이터 셋을 사용하였으며, 실험 결과 s-NN 적용한 CBR 모델이 고정된 k 값을 적용한 전통적인 CBR 모델보다 더 우수한 성능을 보여주었다.

  • PDF

A Case-Based Reasoning Method Improving Real-Time Computational Performances: Application to Diagnose for Heart Disease (대용량 데이터를 위한 사례기반 추론기법의 실시간 처리속도 개선방안에 대한 연구: 심장병 예측을 중심으로)

  • Park, Yoon-Joo
    • Information Systems Review
    • /
    • v.16 no.1
    • /
    • pp.37-50
    • /
    • 2014
  • Conventional case-based reasoning (CBR) does not perform efficiently for high volume dataset because of case-retrieval time. In order to overcome this problem, some previous researches suggest clustering a case-base into several small groups, and retrieve neighbors within a corresponding group to a target case. However, this approach generally produces less accurate predictive performances than the conventional CBR. This paper suggests a new hybrid case-based reasoning method which dynamically composing a searching pool for each target case. This method is applied to diagnose for the heart disease dataset. The results show that the suggested hybrid method produces statistically the same level of predictive performances with using significantly less computational cost than the CBR method and also outperforms the basic clustering-CBR (C-CBR) method.

Performance Improvement of Intelligent Firefignting Control System for a Ship using Fuzzy Database (선박에서 퍼지 데이터베이스를 이용한 지능형 화재진압통제시스템의 성능 개선)

  • 현우석;김용기
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.340-343
    • /
    • 2000
  • 본 논문에서는 선박에서 퍼지 데이터베이스를 이용하여 지능형 화재진압통제시스템의 성능을 개선시키는 방법에 대하여 논의하였다. 규칙과 사례가 통합된 화재진압통제 전문가시스템(C-FFES)에서는 사례기반 추론을 하기 위한 사례베이스가 일반적인 데이터베이스로 구성되어 있어서, 이전에 화재가 발생했던 사례와 현재의 사례가 유사한지를 구별하기가 쉽지 않은 문제점을 지니고 있다. 제안하는 시스템에서는 예외적인 상황에서 화재가 발생하는 사례를 퍼지데이터베이스로 구성하고, 현 상황과 예외적인 상황에서 화재가 발생하는 사례를 조회하기 위하여 퍼지 유사도 개념을 적용하여 현재 입력된 사례와 가장 유사한 사례가 조회될 수 있도록 하였다. 또한 기존의 규칙 기반 FFES(Fire Fighting Expert System), 사례기반 추론에 의해 확장된 C-FFES(Combined-Fire Fighting Expert System) 그리고 제안하는 A-FFES(Advanced Fire fighting Expert System)를 비교를 통해, 제안하는 A-FFES가 화재탐지율을 향상시킴을 보였다.

  • PDF

A Case Study on Convergence Service based on Cloud Computing (클라우드 컴퓨팅 기반 융.복합형 서비스 사례 연구)

  • Seo, Kwang-Kyu;Kim, Won-Ki;Cho, Kyung-Kuk;Yoon, Su-Jin
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2012.11a
    • /
    • pp.105-112
    • /
    • 2012
  • 클라우드 서비스는 사용자가 인터넷 접속만으로 언제 어디서나 데이터, 네트워크, 콘텐츠 등의 사용이 가능한 서비스이다. 공공부문과 선진기업의 클라우드 서비스 도입이 증가하면서 관련 서비스가 급속히 확대되고 있고, 향후 시장규모가 급성장 할 것으로 전망된다. 특히 클라우드 서비스는 다양한 산업 도메인에 적용되어 새로운 융 복합 서비스가 나타나고 있는데, 본 연구에서는 다양한 클라우드 기반의 융 복합 서비스의 사례를 살펴본다. 본 연구에서는 다양한 클라우드 기반의 융 복합 서비스의 사례 분석을 위한 산업군을 분류하여 클라우드 기반의 융복합 서비스의 사례 연구를 수행하였다. 사례 연구를 통하여 클라우드 기반 융 복합 서비스의 활용 방안과 융 복합 서비스의 사례를 통한 시사점 및 발전전략을 제시하였다. 궁극적으로 클라우드 기반의 융 복합 서비스를 활성화하기 위해서는 클라우드 기술과 서비스에 관한 표준화 및 법제도정비를 조속히 추진하여야 하며 관련 서비스를 활성화할 수 있는 생태계 기반 조성이 필요하며 ICT산업은 물론 다양한 산업군이 참여하므로 생태계 구성원간의 윈-윈 할 수 있는 서비스 비즈니스 모델 발굴을 통한 선순환 구조의 조기형성이 중요함을 도출하였다.

  • PDF