• Title/Summary/Keyword: 사례기반추론기법

Search Result 108, Processing Time 0.024 seconds

Defect Classification and Management System Using CBR technique Based Internet in Apartment Housing Project (인터넷기반 공동주택 하자분류 및 관리 시스템 구축에 사례기반 추론기법을 활용한 연구)

  • Kim, Gwang-Hee;Shin, Han-Woo;Seo, Deok-Seok;Yoon, Jie-Eon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.1
    • /
    • pp.63-70
    • /
    • 2008
  • Management process of apartment buildings construction has increased because the after service of construction company meet the needs of customers. Many defect data, which was inspected by construction company or customers before moving into a new apartment house, were classified by field engineers and then communicated to corresponding subcontractors. The classification process needs to be performed by an expert engineer because there is so much data, it is unfeasible to complete in a short period of time. For this classification process, an automatic classification system using case base reasoning (CBR) should be considered. This research proposed a defect management system with automatic classification system using CBR. This constructed defect management system consists of cyber after service system for tenants and the whole defect management process of construction, preservation and management of apartment buildings. This system could improve the efficiency of expert work in terms of time and accuracy, as well as helping laymen users to conduct defect classification work as experts do.

A Hybrid Forecasting Framework based on Case-based Reasoning and Artificial Neural Network (사례기반 추론기법과 인공신경망을 이용한 서비스 수요예측 프레임워크)

  • Hwang, Yousub
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.43-57
    • /
    • 2012
  • To enhance the competitive advantage in a constantly changing business environment, an enterprise management must make the right decision in many business activities based on both internal and external information. Thus, providing accurate information plays a prominent role in management's decision making. Intuitively, historical data can provide a feasible estimate through the forecasting models. Therefore, if the service department can estimate the service quantity for the next period, the service department can then effectively control the inventory of service related resources such as human, parts, and other facilities. In addition, the production department can make load map for improving its product quality. Therefore, obtaining an accurate service forecast most likely appears to be critical to manufacturing companies. Numerous investigations addressing this problem have generally employed statistical methods, such as regression or autoregressive and moving average simulation. However, these methods are only efficient for data with are seasonal or cyclical. If the data are influenced by the special characteristics of product, they are not feasible. In our research, we propose a forecasting framework that predicts service demand of manufacturing organization by combining Case-based reasoning (CBR) and leveraging an unsupervised artificial neural network based clustering analysis (i.e., Self-Organizing Maps; SOM). We believe that this is one of the first attempts at applying unsupervised artificial neural network-based machine-learning techniques in the service forecasting domain. Our proposed approach has several appealing features : (1) We applied CBR and SOM in a new forecasting domain such as service demand forecasting. (2) We proposed our combined approach between CBR and SOM in order to overcome limitations of traditional statistical forecasting methods and We have developed a service forecasting tool based on the proposed approach using an unsupervised artificial neural network and Case-based reasoning. In this research, we conducted an empirical study on a real digital TV manufacturer (i.e., Company A). In addition, we have empirically evaluated the proposed approach and tool using real sales and service related data from digital TV manufacturer. In our empirical experiments, we intend to explore the performance of our proposed service forecasting framework when compared to the performances predicted by other two service forecasting methods; one is traditional CBR based forecasting model and the other is the existing service forecasting model used by Company A. We ran each service forecasting 144 times; each time, input data were randomly sampled for each service forecasting framework. To evaluate accuracy of forecasting results, we used Mean Absolute Percentage Error (MAPE) as primary performance measure in our experiments. We conducted one-way ANOVA test with the 144 measurements of MAPE for three different service forecasting approaches. For example, the F-ratio of MAPE for three different service forecasting approaches is 67.25 and the p-value is 0.000. This means that the difference between the MAPE of the three different service forecasting approaches is significant at the level of 0.000. Since there is a significant difference among the different service forecasting approaches, we conducted Tukey's HSD post hoc test to determine exactly which means of MAPE are significantly different from which other ones. In terms of MAPE, Tukey's HSD post hoc test grouped the three different service forecasting approaches into three different subsets in the following order: our proposed approach > traditional CBR-based service forecasting approach > the existing forecasting approach used by Company A. Consequently, our empirical experiments show that our proposed approach outperformed the traditional CBR based forecasting model and the existing service forecasting model used by Company A. The rest of this paper is organized as follows. Section 2 provides some research background information such as summary of CBR and SOM. Section 3 presents a hybrid service forecasting framework based on Case-based Reasoning and Self-Organizing Maps, while the empirical evaluation results are summarized in Section 4. Conclusion and future research directions are finally discussed in Section 5.

A Design of the E-Commerce System based on Customer Preference md Multi-Agent (사용자 선호도와 지능형 다중에이전트 기반의 전자상거래 시스템의 설계)

  • Na, Yun-Ji;Ko, Il-Seok;Yoon, Yong-Ki
    • The KIPS Transactions:PartD
    • /
    • v.11D no.1
    • /
    • pp.241-246
    • /
    • 2004
  • The importance of electronic commerce system has been growing rapidly due to development of information technology and acceleration of enterprise e-business. Electronic commerce system must provide convenient interface, easy and fast searching function, and product information satisfied customer's. A study about the system that used a reasoning technique and an Agent technology for this is required. In this paper, we designs electronic commerce system with customer preference and sales agent which is composed of case-based reasoning and rule-based reasoning for high customer satisfaction. Also, we were shown on an appropriateness of a proposal system by an experiment.

Research on E-commerce business model based on NFC (NFC 기반의 전자상거래 비즈니스 모델에 관한 연구)

  • Jin, Dong-Su
    • International Commerce and Information Review
    • /
    • v.13 no.4
    • /
    • pp.81-100
    • /
    • 2011
  • With the smart device deployment, the interest in NFC technology is increasing. In this study, to be successful in NFC based business commercialization, we present main factors affecting success of NFC based e-commerce business model. To this end, we conduct NFC and business models, case study methodology through literature review. And then, we suggest representative NFC e-commerce business model cases, and practices that affect the success or failure of the six factors are derived Derived factors are based on inductive learning to apply the technology to create a case study table, and decision trees to bring it, NFC-based commerce business models need to be successful at the strategic implications are present.

  • PDF

An Electrical fire Diagnosis System Using the Mixed Approach of the Case-Based Reasoning with the Knowledge-Based Reasoning (지식기반 추론과 사례기반 추론의 혼합 적용 기법을 이용한 전기화재 원인진단 시스템)

  • 권동명;김두현;김상철;김상렬
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1999.06a
    • /
    • pp.223-228
    • /
    • 1999
  • This paper presents an electrical fire diagnosis system using intellectual reasoning which is the mixed approach of the case-based reasoning with the knowledge-based reasoning A prototype system is implemented using Delphi, one of the program development tools under windows environment, for making an application program for database. And database is builded using Paradox. The results of applying the system to some imaginary fire cases to verify its capability and validity show that the causes of fires is successfully diagnosed, so the proposed system proves to be reasonable.

  • PDF

Estimating VaR(Value-at-Risk) of non-listed and newly listed companies using Case Based Reasoning (사례기반추론을 이용한 비상장기업 및 신규상장기업의 VaR 추정)

  • 최경덕;노승종
    • Journal of Intelligence and Information Systems
    • /
    • v.8 no.1
    • /
    • pp.1-13
    • /
    • 2002
  • Estimating the Value-at-Risk (VaR) of a non-listed or newly listed company in stock market is impossible due to lack of stock exchange data. This study employes Case-Based Reasoning (CBR) for estimating VaR's of those companies. CBR enables us to identify and select existing companies that have similar financial and non-financial characteristics to the unlisted target company. The VaR's of those selected companies can give estimates of VaR for the target company. We developed a system called VAS-CBR and showed how well the system estimates the VaR's of unlisted companies.

  • PDF

Cost Estimation of Case-Based Reasoning Using Hybrid Genetic Algorithm - Focusing on Local Search Method Using Correlation Analysis - (혼합형 유전자 알고리즘을 적용한 사례기반추론 공사비예측 - 상관분석을 이용한 지역탐색 기법을 중심으로 -)

  • Jung, Sangsun;Park, Moonseo;Lee, Hyun-Soo;Yoon, Inseok
    • Korean Journal of Construction Engineering and Management
    • /
    • v.21 no.1
    • /
    • pp.50-60
    • /
    • 2020
  • Estimates of project costs in the early stages of a construction project have a significant impact on the operator's decision-making in important matters, such as the site's decision or the construction period. However, it is difficult to carry out the initial stage with confidence because information such as design books and specifications is not available. In previous studies, case-based reasoning was used to predict initial construction costs, and genetic algorithms were used to calculate the weight of the inquiry phase among them. However, some say that it is difficult to perform better than the current year because existing genetic algorithms are calculated in random numbers. To overcome these limitations, correlation numbers using correlation analysis rather than random numbers are reflected in the genetic algorithm by method of local search, and weights are calculated using a hybrid genetic algorithm that combines local search and genetic algorithms. A case-based reasoning model was developed using the weights calculated and validated with the data. As a result, it was found that the hybrid GA-CBR applied with local search performed better than the existing GA-CBR.

A Machine learning Approach for Knowledge Base Construction Incorporating GIS Data for land Cover Classification of Landsat ETM+ Image (지식 기반 시스템에서 GIS 자료를 활용하기 위한 기계 학습 기법에 관한 연구 - Landsat ETM+ 영상의 토지 피복 분류를 사례로)

  • Kim, Hwa-Hwan;Ku, Cha-Yang
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.5
    • /
    • pp.761-774
    • /
    • 2008
  • Integration of GIS data and human expert knowledge into digital image processing has long been acknowledged as a necessity to improve remote sensing image analysis. We propose inductive machine learning algorithm for GIS data integration and rule-based classification method for land cover classification. Proposed method is tested with a land cover classification of a Landsat ETM+ multispectral image and GIS data layers including elevation, aspect, slope, distance to water bodies, distance to road network, and population density. Decision trees and production rules for land cover classification are generated by C5.0 inductive machine learning algorithm with 350 stratified random point samples. Production rules are used for land cover classification integrated with unsupervised ISODATA classification. Result shows that GIS data layers such as elevation, distance to water bodies and population density can be effectively integrated for rule-based image classification. Intuitive production rules generated by inductive machine learning are easy to understand. Proposed method demonstrates how various GIS data layers can be integrated with remotely sensed imagery in a framework of knowledge base construction to improve land cover classification.

Response Modeling for the Marketing Promotion with Weighted Case Based Reasoning Under Imbalanced Data Distribution (불균형 데이터 환경에서 변수가중치를 적용한 사례기반추론 기반의 고객반응 예측)

  • Kim, Eunmi;Hong, Taeho
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.29-45
    • /
    • 2015
  • Response modeling is a well-known research issue for those who have tried to get more superior performance in the capability of predicting the customers' response for the marketing promotion. The response model for customers would reduce the marketing cost by identifying prospective customers from very large customer database and predicting the purchasing intention of the selected customers while the promotion which is derived from an undifferentiated marketing strategy results in unnecessary cost. In addition, the big data environment has accelerated developing the response model with data mining techniques such as CBR, neural networks and support vector machines. And CBR is one of the most major tools in business because it is known as simple and robust to apply to the response model. However, CBR is an attractive data mining technique for data mining applications in business even though it hasn't shown high performance compared to other machine learning techniques. Thus many studies have tried to improve CBR and utilized in business data mining with the enhanced algorithms or the support of other techniques such as genetic algorithm, decision tree and AHP (Analytic Process Hierarchy). Ahn and Kim(2008) utilized logit, neural networks, CBR to predict that which customers would purchase the items promoted by marketing department and tried to optimized the number of k for k-nearest neighbor with genetic algorithm for the purpose of improving the performance of the integrated model. Hong and Park(2009) noted that the integrated approach with CBR for logit, neural networks, and Support Vector Machine (SVM) showed more improved prediction ability for response of customers to marketing promotion than each data mining models such as logit, neural networks, and SVM. This paper presented an approach to predict customers' response of marketing promotion with Case Based Reasoning. The proposed model was developed by applying different weights to each feature. We deployed logit model with a database including the promotion and the purchasing data of bath soap. After that, the coefficients were used to give different weights of CBR. We analyzed the performance of proposed weighted CBR based model compared to neural networks and pure CBR based model empirically and found that the proposed weighted CBR based model showed more superior performance than pure CBR model. Imbalanced data is a common problem to build data mining model to classify a class with real data such as bankruptcy prediction, intrusion detection, fraud detection, churn management, and response modeling. Imbalanced data means that the number of instance in one class is remarkably small or large compared to the number of instance in other classes. The classification model such as response modeling has a lot of trouble to recognize the pattern from data through learning because the model tends to ignore a small number of classes while classifying a large number of classes correctly. To resolve the problem caused from imbalanced data distribution, sampling method is one of the most representative approach. The sampling method could be categorized to under sampling and over sampling. However, CBR is not sensitive to data distribution because it doesn't learn from data unlike machine learning algorithm. In this study, we investigated the robustness of our proposed model while changing the ratio of response customers and nonresponse customers to the promotion program because the response customers for the suggested promotion is always a small part of nonresponse customers in the real world. We simulated the proposed model 100 times to validate the robustness with different ratio of response customers to response customers under the imbalanced data distribution. Finally, we found that our proposed CBR based model showed superior performance than compared models under the imbalanced data sets. Our study is expected to improve the performance of response model for the promotion program with CBR under imbalanced data distribution in the real world.

A Block Division CAPP System Supported by Expert System (전문가시스템의 지원을 받는 블럭분할 CAPP 시스템)

  • Jae-Won Lee;In-Sik Hwang;Yong-Jae Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.3
    • /
    • pp.44-50
    • /
    • 1995
  • We describe here the research work concerning the development of the CAPP(computer aided process planning) system, named BLOCK. designed to support block division of ship. The system consists of the expert system part generating block division lines, and their evaluation and editing one. As a reasoning approach of expert system, the case-based reasoning is used. The division lines can be graphically edited and the satisfaction measure of block division can be checked up in the evaluation stage with separate window. The expert system is developed by using NEXPERT Object development tool in the workstation. Currently the target ship is VLCC.

  • PDF