• Title/Summary/Keyword: 사례기반추론기법

Search Result 108, Processing Time 0.028 seconds

A Study on Multi-Agent Using Case-Based Reasoning And Aesthetic Engineering (감성공학기법을 응용한 사례기반추론의 다중 에이전트에 관한 연구)

  • Lee, Sang-Ki;Yoon, Jung-Mo
    • Annual Conference of KIPS
    • /
    • 2000.10a
    • /
    • pp.301-304
    • /
    • 2000
  • 전자상거래 지원 시스템에서 판매지원 에이전트는 고객의 취향을 파악하여 구매자에게 가장 적절한 상품을 탐색하여 사용자의 만족도를 극대화할 수 있어야 한다. 이에 인공지능 기법에 하나인 사례기반 추론기법을 이용한 판매지원 에이전트와 감성공학을 응용한 신제품 디자인 개발지원 에이전트를 결합한 다중 에이전트 시스템을 제안하고자 한다.

  • PDF

A Hybrid Approach Using Case-Based Reasoning and Fuzzy Logic for Corporate Bond Rating (퍼지집합이론과 사례기반추론을 활용한 채권등급예측모형의 구축)

  • Kim Hyun-jung;Shin Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.10 no.2
    • /
    • pp.91-109
    • /
    • 2004
  • This study investigates the effectiveness of a hybrid approach using fuzzy sets that describe approximate phenomena of the real world. Compared to the other existing techniques, the approach handles inexact knowledge in common linguistic terms as human reasoning does it. Integration of fuzzy sets with case-based reasoning (CBR) is important in that it helps to develop a successful system far dealing with vague and incomplete knowledge which statistically uses membership value of fuzzy sets in CBR. The preliminary results show that the accuracy of the integrated fuzzy-CBR approach proposed for this study is higher that of conventional techniques. Our proposed approach is applied to corporate bond rating of Korean companies.

  • PDF

사례기반 추론에 의한 반도체 패키징 공장의 Cycle-time 예측 모형 개발

  • Kim, Gyu-Jin;Seo, Yong-Mu
    • 한국경영정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.611-616
    • /
    • 2007
  • 반도체 패키징 공장에서 싸이클타임(Cycle-time)을 정확히 예측하는 것은 납기일 준수를 통해 고객만족도를 향상시킬 수 있고, 보다 효율적인 스케쥴링을 가능하게 하여 공장 가동률을 높일 수 있게 한다. 그러나 반도체 패키징은 제품 종류가 다양하고 제품마다 특화된 기술을 사용할 뿐만 아니라 공정 순서나, WIP에 따라 싸이클타임이 크게 영향을 받아 그 정확한 예측이 매우 어렵기 때문에 현장 전문가의 판단에 의존하는 경우가 많았다. Fab공정의 경우 전문가를 도와 좀 더 정확한 예측에 도움을 주기 위해 그 동안 전통적 통계 기법 및 시뮬레이션에 기반한 의사결정 모형이 많이 연구되었는데, 최근에는 기계학습 및 인공지능 기법을 사용한 연구가 눈에 띄고 있으며 기존의 방법보다 우수한 성능을 보여 주는 것으로 나타났다. 하지만 아직 기계학습 및 인공지능을 이용한 충분한 연구가 진행되지 못하고 있는 실정이다. 따라서 본 연구에서는 사례기반 추론을 사용하여 패키징 공정의 싸이클타임을 예측하고자 하였으며 그 성능을 인공신경망 모형, 의사결정나무 모형, 그리고 해당 분야 전문가의 예측치와 비교하였다. 실험결과에 따르면 사례기반추론 모형이 가장 뛰어난 성능을 보이는 것으로 나타났다.

  • PDF

A Case-Specific Feature Weighting Method in Case-Based Reasoning (사례기반 추론에서 사례별 속성 가중치 부여 방법)

  • 이재식;전용준
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.10a
    • /
    • pp.391-398
    • /
    • 1999
  • 사례기반 추론을 포함한 Lazy Learning 방법들은 인공신경망이나 의사결정 나무와 같은 Eager Learning 방법들과 비교하여 여러 가지 상대적인 장점을 가지고 있다. 그러나 Lazy Learning 방법은 역시 상대적인 단점들도 가지고 있다. 첫째로 사례를 저장하기 위하여 많은 공간이 필요하며, 둘째로 문제해결 시점에서 시간이 많이 소요된다. 그러나 보다 심각한 문제점은 사례가 관련성이 낮은 속성들을 많이 가지고 있는 경우에 Lazy Learning 방법은 사례를 비교할 때에 혼란을 겪을 수 있다는 점이며, 이로 인하여 분류 정확도가 크게 저하될 수 있다. 이러한 문제점을 해결하기 위하여 Lazy Learning 방법을 위한 속성 가중치 부여 방법들이 많이 연구되어 왔다. 그러나 기존에 발표된 대부분의 방법들이 속성 가중치의 유효 범위를 전역적으로 하는 것들이었다. 이에 본 연구에서는 새로운 지역적 속성 가중치 부여 방법을 제안한다. 본 연구에서 제안하는 속성 가중치 부여 방법(CBDFW : 사례기반 동적 속성 가중치 부여)은 사례별로 속성 가중치를 다르게 부여하는 방법으로서 사례기반 추론의 원리를 속성 가중치 부여 과정에 적용하는 것이다. CBDFW의 장점으로서 (1) 수행 방법이 간단하며, (2) 논리적인 처리 비용이 기존 방법들에 비해 낮으며, (3) 신축적이라는 점을 들 수 있다. 본 연구에서는 신용 평가 문제에 CBDFW의 적용을 시도하였고, 다른 기법들과 비교에서 비교적 우수한 결과를 얻었다.

  • PDF

이미지 기반 적대적 사례 생성 기술 연구 동향

  • O, Hui-Seok
    • Review of KIISC
    • /
    • v.30 no.6
    • /
    • pp.107-115
    • /
    • 2020
  • 다양한 응용분야에서 심층신경망 기반의 학습 모델이 앞 다투어 이용됨에 따라 인공지능의 설명 가능한 동작 원리 해석과, 추론이 갖는 불확실성에 관한 분석 또한 심도 있게 연구되고 있다. 이에 심층신경망 기반 기계학습 모델의 취약성이 수면 위로 드러났으며, 이러한 취약성을 이용하여 악의적으로 모델을 공격함으로써 오동작을 유도하고자 하는 시도가 다방면으로 이루어짐에 의해 학습 모델의 강건함 보장은 보안 분야에서의 쟁점으로 부각되고 있다. 모델 추론의 입력으로 이용되는 이미지에 교란값을 추가함으로써 심층신경망의 오분류를 발생시키는 임의의 변형된 이미지를 적대적 사례라 정의하며, 본 논문에서는 최근 인공지능 및 컴퓨터비전 분야에서 이루어지고 있는 이미지 기반 적대적 사례의 생성 기법에 대하여 논한다.

Development of Digestion Gas Production and Dewatering Cake Management in WWTP by Using Data Mining Technology (데이터 마이닝 기법을 활용한 하수처리장 소화가스 예측 및 탈수 케이크 관리 기법 개발)

  • Kim, Dongkwan;Kim, Hyosoo;Kim, Yejin;Kim, Minsoo;Piao, Wenhua;Kim, Changwon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • The purpose of this study is to suggest the effective operation method by developing prediction model for the gas production rate, an indicator of the effectiveness of anaerobic digestion tank, using data mining. At the result, gas production estimate model is developed by using ANN within 10% error. It is expected to help operation of anaerobic digestion by suggesting selected parameter. Meanwhile case based reasoning is applied to develop dewatering cake management technology. Case based reasoning uses the most similar examples of past when a new problem occurs, therefore in this study, management measures are developed that proposes dewatering cake minimization with the minimum change by applying the case based reasoning to sludge disposal process.

The Development of Recommender System Using Clustering-based CBR (클러스터링 기반 사례기반추론을 이용한 추천시스템 개발)

  • Lee, Hui-Jeong;Hong, Tae-Ho
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.05a
    • /
    • pp.519-522
    • /
    • 2004
  • 웹의 급격한 확산과 더불어 고객에게 맞춤화된 정보 제공의 필요성이 높아지고 있다. 또한 전자상거래 기업은 맞춤화와 개인화 서비스를 실현하기 위해서 웹 기반의 추천시스템에 많은 관심을 가지고 있다. 협업필터링(Collaborative filtering)은 개인화된 정보필터링 기법으로 추천시스템에서 가장 많이 사용되고 있다. 본 연구에서는 MovieLens 데이터 셋의 아이템속성을 고려하여 클러스터링 기반의 사례기반추론을 통한 협업필터링 추천시스템을 개발하고 기존의 방법과 제안된 모델의 성과를 비교 분석하였다.

  • PDF

A Study on the Selection Model of Retaining Wall Methods Using Case-Based Reasoning (사례기반추론을 이용한 흙막이공법 선정모델에 관한 연구)

  • Kim Jae-Yeob;Park U-Yeol;Kim Gwang-Hee;Kim Joong-Koo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.5 s.21
    • /
    • pp.76-83
    • /
    • 2004
  • There is a greater importance for underground work designed and built in the urban areas when it comes to considering the cost-effectiveness and the period of construction commensurate with an increasing trend of skyscrapers. At this stage of underground work, it's extremely necessary to choose a proper earth retaining method. However, a frequent change order during construction happens in Korea where different performers design and construct separately, so there is a great possibility for the change order to affect the aspects of construction cost and period which normally define the outcome of construction work. Therefore, the study has suggested the rational retaining wall method by developing the case-based reasoning model as stool to choose a proper retaining wall method applied at the stage of selecting the earth retaining method. Applying the 'CBR Model' developed in the study to the designing and developing stages of the earth retaining work will contribute to the successful outcomes by decreasing any changes of design from implementing the earth retaining work.

Decision support system on selection of classification method for remote sensing imagery (위성 영상 분류 기법 선정을 위한 의사 결정 지원 시스템)

  • 황보주원;유기윤;김용일
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2004.03a
    • /
    • pp.341-346
    • /
    • 2004
  • 본 연구에서는 사례기반추론(case-based reasoning)을 기본으로 하여 실무자의 분류 기법 또는 분류 구조 결정을 돕는 의사 결정 지원 시스템의 모델을 제시한다. 주요한 네 가지 고려 항목은 자료종류(dataset), 위치(location), 기후(climate), 그리고 분류항목(class)이며 사용자는 이들 네 항목에 대해 적합한 값을 선택하게 된다. 본 시스템은 색인화(indexing) 규칙에 따라 관계형 데이터베이스에 저장된 사례들을 추출하여 제시하며 사용자는 그 중 가장 높은 일치도를 보인 사례들을 참고할 수 있다. 본 연구에서는 위계구조를 통해 다양한 분류 조건을 스크린 상에서 선택할 수 있게 함으로써 사용자가 이에 내재된 논리를 분류 구조의 설계에 반영할 수 있게 한다. 또한 Statistics 기능을 통해 여러 사례의 항목당 분포를 사용자가 검토할 수 있게 함으로써 가장 적합한 사례를 의사결정 지원 시스템과의 피드백을 통해 찾아낼 수 있게 해준다. 이밖에 분류 조건을 변화 시켜가면서 상황의 변화를 참고할 수 있도록 Navigation 기능을 고안하였다.

  • PDF