• Title/Summary/Keyword: 사람 행동 인식

Search Result 269, Processing Time 0.031 seconds

Human Behavior Recognition based on Gaze Direction In Office Environment (실내 환경에서 시선 방향을 고려한 사람 행동 인식)

  • Kong, Byung-Yong;Jung, Do-Joon;Kim, Hang-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.119-120
    • /
    • 2007
  • 본 논문에서는 실내의 고정된 단일 칼라 카메라에서 획득된 비디오 스트림으로부터 사람의 행동을 인식하기 위한 시스템을 제안한다. 제안된 시스템은 사람의 시공간적 상태 변화와 사람의 시선 방향을 이용하여 규칙기반으로 행동을 인식한다. 사람의 의미 있는 상태변화를 이벤트로, 이벤트의 시퀀스 즉, 사람의 행동을 시나리오로 정의하였다. 따라서 입력비디오 스트림에서 사람의 상태변화로 이벤트를 검출하고, 검출된 이벤트의 시퀀스로 사람의 행동을 인식한다. 사람의 시선은 얼굴과 머리 영역의 색정보를 이용한 시선 방향 추정 방법으로 찾아지며, 사람의 상태 변화는 사람의 위치와 키 등을 이용하여 검출된다. 본 시스템은 실내 환경에서 획득한 비디오에서 실험하였으며, 실험결과 시선 방향에 의해 서로 다른 행동을 구분하여 인식할 수 있었다.

  • PDF

Analysis of Human Activity Using Silhouette And Feature Parameters (실루엣과 특징 파라미터를 이용한 사람 행동 분석)

  • Kim, Sun-Woo;Choi, Yeon-Sung;Yang, Hae-Kwon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.923-926
    • /
    • 2011
  • 본 연구에서는 움직이는 물체가 있는 비디오에서 검출된 전경 영상(실루엣)을 토대로 사람을 추적하고 추적된 사람의 실루엣 형상을 통하여 활동성을 인식하는 실시간 감시 시스템에 적용 가능한 사람의 행동을 인식하고 분석하고자 한다. 전경에서 블랍(사람)을 검출하는 방법은 기존에 연구했던 차영상을 이용하였고, 검출된 블랍을 대상으로 사람임을 판단하고 사람인 경우 검출된 블랍의 실루엣을 이용한 기존의 자세 추정 기법에 추가적으로 4가지 특징들을 추가하여 사람의 행동을 분석한다. 각 파라미터들은 임계치를 통하여 구분하였다. 본 논문에서는 사람의 행동은 크게 네 가지의 경우로 {Standing, Bending/Crawling, Laying down, Sitting} 분류한다. 제안된 특징 파라미터들을 추가한 방법은 기존의 실루엣 기반의 자세 추정 기법만을 사용하는 것보다 좀더 높은 인식율을 보여주었다.

  • PDF

Depth-Based Recognition System for Continuous Human Action Using Motion History Image and Histogram of Oriented Gradient with Spotter Model (모션 히스토리 영상 및 기울기 방향성 히스토그램과 적출 모델을 사용한 깊이 정보 기반의 연속적인 사람 행동 인식 시스템)

  • Eum, Hyukmin;Lee, Heejin;Yoon, Changyong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.6
    • /
    • pp.471-476
    • /
    • 2016
  • In this paper, recognition system for continuous human action is explained by using motion history image and histogram of oriented gradient with spotter model based on depth information, and the spotter model which performs action spotting is proposed to improve recognition performance in the recognition system. The steps of this system are composed of pre-processing, human action and spotter modeling and continuous human action recognition. In pre-processing process, Depth-MHI-HOG is used to extract space-time template-based features after image segmentation, and human action and spotter modeling generates sequence by using the extracted feature. Human action models which are appropriate for each of defined action and a proposed spotter model are created by using these generated sequences and the hidden markov model. Continuous human action recognition performs action spotting to segment meaningful action and meaningless action by the spotter model in continuous action sequence, and continuously recognizes human action comparing probability values of model for meaningful action sequence. Experimental results demonstrate that the proposed model efficiently improves recognition performance in continuous action recognition system.

Specific human behaviors recognition algorithm using Hidden Markov Models in an intelligent surveillance system (지능형 영상 감시 시스템에서의 은닉 마르코프 모델을 이용한 특이 행동 인식 알고리즘)

  • Jung, Chang-Wook;Kang, Dong-Jung
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10c
    • /
    • pp.475-479
    • /
    • 2007
  • 본 논문은 Hidden Markov Model을 사용하여 사람의 특정한 행동을 인식하여 사용자에게 알려주는 지능형 영상 감시 시스템을 제안한다. 본 방법에는 카메라를 통해 입력된 영상에서 사람 영역을 찾은 후 발 영역만을 추출하여 특징이 되는 관측열을 생성한다. 특징 영역은 입력 영상의 각 프레임을 16개의 영역으로 나누어 발바닥이 위치한 곳의 코드를 읽어 사용하고, 인식하고자하는 패턴 행동들에 대해서는 각각의 관측열을 구하고 HMM의 Baum-Welch 알고리즘을 사용하여 학습한다. 인식에는 전향 알고리즘을 사용하여 입력된 행동과 학습된 행동을 확률적으로 비교하므로써 영상 내의 행동이 어떤 패턴 행동인지를 결정하여 출력하도록 한다. 제시된 방법은 복도에서 사람의 특정 행동을 인식하는데 성공적으로 적용될 수 있음을 실험을 통해 확인 하였다.

  • PDF

Human Activity Recognition using Model-based Gaze Direction Estimation (모델 기반의 시선 방향 추정을 이용한 사람 행동 인식)

  • Jung, Do-Joon;Yoon, Jeong-Oh
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.4
    • /
    • pp.9-18
    • /
    • 2011
  • In this paper, we propose a method which recognizes human activity using model-based gaze direction estimation in an indoor environment. The method consists of two steps. First, we detect a head region and estimate its gaze direction as prior information in the human activity recognition. We use color and shape information for the detection of head region and use Bayesian Network model representing relationships between a head and a face for the estimation of gaze direction. Second, we recognize event and scenario describing the human activity. We use change of human state for the event recognition and use a rule-based method with combination of events and some constraints. We define 4 types of scenarios related to the gaze direction. We show performance of the gaze direction estimation and human activity recognition with results of experiments.

LSTM(Long Short-Term Memory)-Based Abnormal Behavior Recognition Using AlphaPose (AlphaPose를 활용한 LSTM(Long Short-Term Memory) 기반 이상행동인식)

  • Bae, Hyun-Jae;Jang, Gyu-Jin;Kim, Young-Hun;Kim, Jin-Pyung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.5
    • /
    • pp.187-194
    • /
    • 2021
  • A person's behavioral recognition is the recognition of what a person does according to joint movements. To this end, we utilize computer vision tasks that are utilized in image processing. Human behavior recognition is a safety accident response service that combines deep learning and CCTV, and can be applied within the safety management site. Existing studies are relatively lacking in behavioral recognition studies through human joint keypoint extraction by utilizing deep learning. There were also problems that were difficult to manage workers continuously and systematically at safety management sites. In this paper, to address these problems, we propose a method to recognize risk behavior using only joint keypoints and joint motion information. AlphaPose, one of the pose estimation methods, was used to extract joint keypoints in the body part. The extracted joint keypoints were sequentially entered into the Long Short-Term Memory (LSTM) model to be learned with continuous data. After checking the behavioral recognition accuracy, it was confirmed that the accuracy of the "Lying Down" behavioral recognition results was high.

Behavior Network based Bayesian Network Ensemble Methodology for Recognizing Uncertain Environment (불확실한 환경 인식을 위한 행동 네트워크 기반 베이지안 네트워크 앙상블 기법)

  • Im Seugn-Bin;Cho Sung-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.305-308
    • /
    • 2005
  • 시각 센서를 이용한 환경 및 상황 인식은 로봇의 자동화된 행동을 위해서 매우 중요하다. 실제 환경에서 사람은 주위를 인식할 때 여러 단계의 인식과정을 거친다. 효율적이고 정확한 환경 인식을 위해서는 지능형 로봇의 인식 또한 사람의 인식과정과 같이 다단계로 이루어져야 한다. 또한 실제 환경은 유동적이며 많은 불확실성을 가지고 있으므로 불확실한 상황에 강인한 인식 방법이 필요하다. 이러한 불확실성을 내포한 환경 및 상황 인식에는 베이지안 네트워크를 이용한 인식이 강인하나 복잡한 환경을 하나의 베이지안 네트워크로 인식하는 것은 어렵다. 이 논문에서는 복잡하고 불확실한 환경 인식을 위한 여러 베이지안 네트워크를 사람의 인식과 같은 다단계의 인식 과정으로 구성된 행동 네트워크 기반으로 결합하는 앙상블 기법을 제안한다. 불확실한 상황을 적용한 환경 실험과 로봇 시뮬레이터를 이용한 로봇 실험으로 베이지안 네트워크 앙상블 기법이 환경 인식에 효과적인 것을 확인할 수 있었다.

  • PDF

Detection of User Behavior Using Real-Time User Joints and YOLOv3 (실시간 사용자 관절과 YOLOv3를 이용한 사용자 행동 검출)

  • Oh, Ye-Jun;Kim, Sang-Joon;Choi, Hee-Jo;Park, Goo-Man
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.228-231
    • /
    • 2021
  • 인물의 행동 및 이동을 인식하는 것은 다양한 분야에서 활용될 수 있다. 사람의 행동을 파악하여 니즈를 예상하고 맞춤형 콘텐츠를 제공하거나 행동을 예측하여 범죄나 폭력을 예방하는 등 여러 방면으로 활용 가능하다. 그러나 이동과 현재 위치 정보만으로 인물의 행동을 예측하기에는 한계가 있다. 본 논문에서는 실시간으로 사람의 이동과 행동을 인식하기 위해 Kinect v2가 제공하는 관절 정보와 YOLOv3를 이용하여 실시간으로 사람의 행동을 인식하는 시스템을 제작하였다.

  • PDF

A Study on Recognition of Dangerous Behaviors using Privacy Protection Video in Single-person Household Environments

  • Lim, ChaeHyun;Kim, Myung Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.5
    • /
    • pp.47-54
    • /
    • 2022
  • Recently, with the development of deep learning technology, research on recognizing human behavior is in progress. In this paper, a study was conducted to recognize risky behaviors that may occur in a single-person household environment using deep learning technology. Due to the nature of single-person households, personal privacy protection is necessary. In this paper, we recognize human dangerous behavior in privacy protection video with Gaussian blur filters for privacy protection of individuals. The dangerous behavior recognition method uses the YOLOv5 model to detect and preprocess human object from video, and then uses it as an input value for the behavior recognition model to recognize dangerous behavior. The experiments used ResNet3D, I3D, and SlowFast models, and the experimental results show that the SlowFast model achieved the highest accuracy of 95.7% in privacy-protected video. Through this, it is possible to recognize human dangerous behavior in a single-person household environment while protecting individual privacy.

A Study on Human Behavior Classification using a Hidden Markov Model (은닉 마코프 모델을 이용한 행동 분류 연구)

  • Seo, Jeong-U;Oh, Hyeon-kyo;Cho, Seung-ho;Lee, Ho-Seok;Moon, Bong-hee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.1354-1357
    • /
    • 2013
  • 최근 다양한 센서들이 일상생활에 활용되어, 일정한 환경에서 사람의 행동을 분류하고 인식하기 위한 연구들이 활발하게 진행되고 있다. 본 연구에서는 2개의 진동센서 값과 1개의 적외선 센서 값을 은닉 마코프 모델에 적용하여 침대 위에 있는 사람의 3가지 행동유형-눕기, 뒤척임, 일어나기-을 분류하고자 한다. 3개 센서 값의 특징들을 기초로 은닉 마코프 모델에 학습시키고, 특징집합과 학습 데이터량을 변화시키면서 사람의 행동유형에 대한 인식 실험을 수행하였다. 특징 개수 혼합에 따른 인식률의 차이는 거의 없는 것으로 나타났으나, 학습 데이터량을 증가시켜 가면서 수행한 실험에서는 인식률이 평균 78.127%로 향상되는 성과를 거두었다.