실내공간에서 사람 검출 및 인식은 지능영상정보 시스템에서 중요한 기능중의 하나이다. 실내공간에서 사람검출을 위한 트랙킹 과정에서 발생하는 표류(drifting)는 성능 저하의 큰 원인을 제공한다. 표류로 인한 비사람의 트랙킹을 방지하기 위해서 사람여부를 결정하는 것이 필요하다. 이를 위해서 합성곱 신경망을 적용한 결과 80%의 사람 인식율을 얻었다.
사람의 얼굴을 검출 및 인식을 하는 여러 가지 다양한 알고리즘이 소개되고 있다. 본 논문에서는 사람의 피부색을 이용한 컬러정보(Color Information)와 국부 최적 임계치 기법을 사용하여 얼굴의 형상정보를 검출하고 얼굴 영역을 검출하는 방법을 사용한다. 컬러정보를 사용하여 얼굴의 후보영역을 선정한 후에 그 후보영역에서 얼굴의 특징인 눈, 눈썹, 입을 찾는 방법을 제안한다. 피부색은 일정한 분포를 가지고 있기 때문에 후보영역을 비교적 정확히 찾을 수 있으며, 국부 최적 임계치 기법은 효과적인 얼굴 특징 검출방법이다.
본 논문에서는 웹 카메라로 촬영된 받아진 입력영상에서 사람의 얼굴을 검출하고 검출된 얼굴을 기반으로 사람 얼굴 아바타를 생성하는 방법에 대하여 다루고 있다. 일반적으로 웹 카메라를 통해 얻은 영상은 해상도가 떨어질 뿐만 아니라 끊임없는 조명의 변화와 복잡한 배경이 존재하여 얼굴을 검출함에 있어 어려움을 준다. 따라서 몇몇의 특징 점에 의존하는 방법으로 사람얼굴의 윤곽선을 찾는다는 것은 큰 어려옴을 겪게 된다. 본 논문에서는 이런 방법들의 결점을 극복하기 위한 새로운 방법을 제안한다. 먼저 칼라정보를 이용하여 실험을 통하여 통계적으로 표준피부색을 정의하여 얼굴의 대략적인 위치와 크기를 얻은 다음으로 B-spline Snake를 이용하여 사람 얼굴의 윤곽선을 정확히 추출할 수 있다.
본 논문에서는 단일 입력 영상에서 특징을 추출하여 실시간으로 에지 대칭과 기울기의 방향성 특징을 이용하여 효과적으로 사람을 검출하는 알고리즘을 제안한다. 제안된 알고리즘은 전처리, 사람 후보 영역 분할, 후보 영역 검증인 3단계로 구성되었다. 여기서 전처리 단계는 주변 조도 환경과 밝기에 강인하고, 사람의 특징인 모양 특징 크기, 사람의 조건을 고려한 사람의 특성을 가진 윤곽선을 검출한다. 그리고 사람 후보 영역 분할 단계는 검출된 윤곽선에서 사람의 에지 대칭성과 크기를 가지고 영역을 분리하고, 에이타부스트 알고리즘을 적용하여 1차 후보 영역을 분할한다. 마지막으로 후보 영역 검증 단계는 분할된 국소 영역에 대한 기울기의 특징 벡터 및 분류기를 이용하여 후보 영역을 검증하여 오검출의 성능을 우수하게 한다. 제안된 알고리즘을 적용하여 모의실험을 한 결과, 제안된 알고리즘은 단일 알고리즘을 적용한 기존 알고리즘 보다 처리 속도가 약 1.7배 정도 개선되었으며, FNR(False Negative Rate)은 3% 정도 우수함을 확인하였다.
다양한 종류의 컬러 영상 콘텐츠에 포함되어 있는 사람의 얼굴 영역은 다른 사람들과 특정인을 구별해 줄 수 있는 개인의 정보에 해당하므로, 입력된 컬러 영상으로부터 가려지지 않은 사람의 얼굴 영역들을 정확하게 검출하는 작업은 매우 중요하다. 본 논문에서는 입력되는 컬러 영상으로부터 기계 학습 알고리즘 중의 하나인 딥러닝 알고리즘을 이용하여 사람의 얼굴 영역을 정확하게 검출하는 방법을 제안한다. 본 논문에서 제안된 방법에서는 먼저 RGB 색상 모델로 입력되는 영상을 $YC_bC_r$ 색상 모델로 변경한 다음, 기 학습된 타원형의 피부 색상 분포 모델을 활용하여 다른 영역들은 제거하고 사람의 피부 영역만을 먼저 분할한다. 그런 다음, CNN 모델 기반의 딥러닝 알고리즘을 적용하여 이전 단계에서 검출된 피부 영역 내에서 사람의 얼굴 영역을 강인하게 검출한다. 실험 결과에서는 제안된 방법이 입력되는 다양한 컬러 영상으로부터 사람의 얼굴 영역들을 기존의 방법에 비해 보다 효율적으로 분할한다는 것을 보여준다. 본 논문에서 제안된 얼굴 영역 검출 방법은 영상 보안, 물체 인식 및 추적, 얼굴 인식 등과 같은 멀티미디어 및 형태 인식과 관련된 실제적인 응용 분야에서 매우 유용하게 활용될 것으로 기대된다.
비디오 기반 사람의 모션 캡쳐에 관한 연구는 최근 몇 년 동안 컴퓨터 비전분야에서 폭넓은 연구가 진행되어지고 있다. 본 논문은 비디오 기반으로 사람의 모션을 전체 프레임이 진행되는 동안 프레임 별로 디스플레이 한다. 첫 프레임에서 비디오 세그멘테이션 과정에서 샷을 검출하고 이를 이용하여 객체를 분류한다. 분류된 객체에서 사람의 영역을 추출한다. 추출된 영역은 다음 프레임의 위치를 예측하게 된다.
빌딩, 집에 설치되어 있는 점유센서는 사람이 없으면 소등하고, 반대이면 점등한다. 현재는 주요 센서로 PIR(pyroelectric infra-red)이 널리 사용되고 있다. 최근에 비전 카메라 센서를 이용하여 사람 점유를 검출하는 연구가 진행되고 있다. 카메라 센서는 정지된 사람을 검출할 수 없는 PIR의 단점을 극복할 수 있는 장점이 있다. 또한 카메라 센서는 사람의 행위 분석, 사람 트랙킹 등 PIR이 제공할 수 없는 기능을 가지기 때문에 향후 가격 대비 성능이 만족되면 PIR을 대체할 것으로 기대된다. 본 논문에서는 PIR 센서의 단점을 극복하기 위해서 카메라를 이용한 점유센서 기법을 제안한다. 제안 방법은 트랙킹, 인식, 검출의 3가지 단계로 구성되어 점유검출의 효율성을 높힌다. 실시간 처리도 중요한 성능이므로 처리 속도가 향상되도록 설계되었다. 비디오 프레임은 USB로 15fps로 입력되는데, 본 소프트웨어는 14.5fps로 처리한다. 점유 성능 검증에서는 82%의 정확도를 얻었다.
본 논문에서는 다양한 운동 모션에서 3차원 사람 자세 추정 모델의 정확도를 향상하는 방법을 제안한다. 기존의 사람 자세 추정 모델은 사람의 자세를 추정할 때 좌표 오차를 유발하는 흔들림, 반전, 교환, 오검출 등의 문제가 발생한다. 이러한 문제는 사람 자세 추정 모델의 정확한 자세 추정을 어렵게 한다. 이를 해결하기 위해 본 논문에서는 딥러닝 기반 이상치 검출 및 보정 방법을 제안한다. 딥러닝 기반의 이상치 검출 방법은 여러 모션에서 좌표의 이상치를 효과적으로 검출하고, 모션의 특징을 활용한 규칙 기반 보정 방법을 통해 이상치를 보정한다. 다양한 실험과 분석을 통하여 제안하는 방법이 골프 스윙 모션과 다양한 운동 모션에서도 사람의 자세를 정확히 추정할 수 있고, 3차원 좌표 데이터에서도 확장 가능함을 보인다.
최근 컴퓨터비젼 분야에서 이벤트 검출 및 인식이 활발히 연구되고 있으며, 도전적인 주제들 중 하나이다. 이벤트 검출 기술들은 많은 감시시스템들에서 유용하고 효율적인 응용 분야이다. 본 논문에서는 사무실 환경에서 발생할 수 있는 이벤트의 검출 및 인식을 위한 방법을 제안한다. 제안된 방법에서의 이벤트는 입장( entering), 퇴장(exiting), 착석(sitting-down), 기립(standing-up)으로 구성된다. 제안된 방법은 하드웨어적인 센서를 사용하지 않고, MHI(Motion History Image) 시퀀스(sequence)를 이용한 인간의 모션 분석을 통해 이벤트를 검출할 수 있는 방법이며, 사람의 체형과 착용한 옷의 종류와 색상, 그라고 카메라로부터의 위치관계에 불변한 특성을 가진다. 에지검출 기술을 HMI 시퀀스정보와 결합하여 사람 모션의 기하학적 특징을 추출한 후, 이 정보를 이벤트 인식의 기본 특징으로 사용한다. 제안된 방법은 단순한 이벤트 검출 프레임웍을 사용하기 때문에 검출하고자 하는 이벤트의 설명만을 첨가하는 것으로 확장이 가능하다. 또한, 제안된 방법은 컴퓨터비견 기술에 기반한 많은 감시시스템에 적용이 가능하다.
본 논문은 차량용 스마트에어백 시스템이 탑승자의 머리 위치를 파악하여 지능적으로 에어백을 전개하도록 돕기 위한 얼굴 위치 검출 알고리즘을 제안한다. 차량용 임베디드 시스템은 한정된 자원에서 기능을 동작시키기 때문에 여러 가지 구현상 제한 조건들이 존재한다. 이러한 제한 조건들을 만족시키기 위해 알고리즘의 경량화 및 최적화 작업이 수반 되어져야한다. 제안하는 알고리즘에서는 이진화된 오브젝트에 거리변환(Distance Transform)을 사용하여 사람의 형태학적 모양을 분석/판단한다. 그리하여 얼굴의 위치를 검출하는 방법이다. 여러 가지 배경 상황에 관계없이 사람의 형태학적 모습을 이용하므로 사람 형태 검출에 용이하다. 설계된 알고리즘은 TI사의 TMS320DM6437 EVM 보드에서 구현하였고 구현 결과 제안한 알고리즘이 IR 영상에서 높은 인식률 및 빠른 처리 속도를 보임을 확인할 수 있었다.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.