• Title/Summary/Keyword: 사동층

Search Result 6, Processing Time 0.02 seconds

Mineralogical Study on Shales of the Sadong and Gobangsan Formation, Munkyung Area (문경지역 사동층, 고방산층 셰일에 대한 광물학적 연구)

  • Choi, Seung-Hyun;Mun, Hyang-Ran;Lee, Young-Boo;Lee, Jung-Hoo;Kim, Young-Mi
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • The metamorphic environments occrrred in the Sadong and the Gobangsan formations were studied through the investigation of chloritoid and white mica in shales at Munkyung area. Two types of white mica occurs in the shale of Sadong formation; muscovite-dominant ($Mu_{76.1}Pa_{18.1}Ma_{5.8}$) and margarite-dominant ($Ma_{52.9}Mu_{31.6}Pa_{15.5}$). It is inferred that the muscovite-dominant white mica is generated by the diagenesis of Na-rich illite whereas the margarite-dominant white mica is generated by reactions between calcite and pyrophyllite separated from illite. In shales of the Gobangsan formation, chloritoids are observed with muscovite, pyrophyllite and chlorite. The chloritoids of the Gobangsan formation are considered to be originated from the reaction between pyrophyllite and chlorite. The Sadong and Gobangsan formations would have experienced the low-temperature metamorphism (anchizone) considering that white mica in general forms above the temperature of $200^{\circ}C$ and the assemblage of chloritoid-pyrophyllite-chlorite is stabilized below $280^{\circ}C$.

우리나라의 물리탐사 기술과 과제

  • Hyeon, Byeong-Gu
    • The Science & Technology
    • /
    • v.9 no.8 s.87
    • /
    • pp.23-27
    • /
    • 1976
  • 우리나라에서 본격적으로 물리탐사를 시도한것은 1958~1960년에 실시한 항공자력탐사로서 그후 현재까지 불과 20년이 지나지 않았다. 그간 물리탐사의 기술발전으로 자원탐사분야에 많은 공헌이 있었다. 현재까지 주로 적용된 분야는 철자원탐사를 위한 자력탐사, 지하수조사를 위한 전기비저항탐사동, 연등의 통화금속광물탐사를 위한 각종 전기탐사, 제3기층 지질구조와 땜공사, 공업단지조성등의 기반암조사, 그리고 광산의 갱내 출수조사등을 위한 탄성파탐사, 우라늄자원을 위한 방사능탐사, 그리고 해저지질 및 자원조사를 위한 해상물리탐사등이다. 이와 동시에 석탄층조사를 위한 전기탐사 및 Model연구자력탐사의 전산처리 적용, 그리고 광물 및 암석의 물리적 성질등 학술분야에 대한 기초연구도 계속하여 왔다. 우리나라에 있어 물리탐사의 적용조건은 비교적 험악한 지형, 복잡한 지질구조, 광상의 불규칙 또는 소규모의 발달과 산재등이다. 이와 같은 특징은 탐사해석의 정도를 높이기 위하여 보다 고도의 과학기술문제의 해결을 요구하고 있으며 이와 동시에 현대적 탐사방법과 연구개발로 대상자원의 탐사지역확대와 지하심부 탐사등이 당면과제이다. 기술과제로서는 석탄 및 기타자원에 대한 물리검층탐사, 경상계 지질구조구명을 위한 탄성파탐사 및 동력탐사의 적용, 항공자력, 전자 및 방사능탐사 및 해양의 각종물리탐사의 기술개발이 있으며 그외 탐사자료의 전산처리기술 및 지구과학의 기초연구등이 있다.

  • PDF

Evaluation of Volcanic Processes and Possible Eruption Types in Ulleung Island (울릉도에서의 화산과정과 발생 가능한 분출유형의 평가)

  • Hwang, Sang Koo;Jeong, Seong Wook;Ryu, Han Young;Son, Young Woo;Kwon, Tae Ho
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.715-727
    • /
    • 2020
  • Volcanostratigraphy in Ulleung Island is divided into 4 stratigraphic groups: Dodong Basaltic Rocks, Ulleung Group, Seonginbong Group and NariGroup. The main pyroclastics in them includes lapilli tuff intercalated within the Dodong Basaltic Rocks, lapilli tuff at the top of Sadong Breccia, Sataegam Tuff, Gombawi Welded Tuff, Bongrae Scoria Deposits, Maljandeung Tuff, Nari Scoria Deposits and Jugam Scoria Deposits. Analysing eruption types, The lapilli tuff in the Dodong Basaltic Rocks is derived from Surtseyan eruption, and the Bongrae, Nari and Jugam Scoria Deposits are caused by Strombolian eruptions or/and sub-Plinion eruptions, but the Sataegam Tuff and Maljandeung Tuff are derived from Plinian and phreatoplinian eruptions. Among them the large-scaled eruptions. In particular, the eruptions of Maljandeung were large enough to result in caldera collapse, and had falled out tephras to the eastern Korean peninsula but even Japan Islands. The magma with high potential to be still alive is judged to be trachyandesitic and phonolitic in composition. If the trachyandesitic magma explodes, it will probably result in a strombolian eruption and have a fairly low explosivity, but if the phonolitic magma explodes, it will probably result in a plinian eruption and have a much higher explosivity. If the eruption had a high explosivity, there is a possibility that it could easily be converted into a phreatoplinian eruption due to the influx of groundwater by the easy generation of fractures. These large-scaled eruptions could fall out tephras to the eastern Korean peninsula but even Japan Islands.

Situation of Geological Occurrences and Utilization, and Research Trends of North Korean Coal Resources (북한 석탄 자원의 부존 및 활용현황과 연구동향)

  • Sang-Mo Koh;Bum Han Lee;Otgon-Erdene Davaasuren
    • Economic and Environmental Geology
    • /
    • v.57 no.3
    • /
    • pp.281-292
    • /
    • 2024
  • North Korea relies heavily on coal as the primary energy source, playing an important role in all energy demand sectors except for the transportation sector. Approximately half of the total electricity is generated through coal-fired power plants, and coal is used to produce heat and power for all industrial facilities. Furthermore, coal has been a significant contributor to earning foreign currency through long-term exports to China. Nevertheless, since the 1980s, indiscriminate mining activities have led to rapid depletion of coal production in most coal mines. Aging mine facilities, lack of investment in new equipment, shortages of fuel and electricity, difficulties in material supply, and frequent damage from flooding have collectively contributed to a noticeable decline in coal production since the late 1980s. North Korea's coal deposits are distributed in various geological formations from the Proterozoic to the Cenozoic, but the most critical coal-bearing formations are Ripsok and Sadong formations distributed in the Pyeongnam Basin of the Late Paleozoic from Carboniferous to Permian, which are called as Pyeongnam North and South Coal Fields. Over 90% of North Korea's coal is produced in these coal fields. The classification of coal in North Korea differs from the international classification based on coalification (peat, lignite, sub-bituminous coal, bituminous coal, and anthracite). North Korean classification based on industrial aspect is classified into bituminous coal, anthracite, and low-grade coal (Chomuyeontan). Based on the energy factor, it is classified into high-calorie coal, medium calorie coal, and low-calorie coal. In North Korea, the term "Chomuyeontan" refers to a type of coal that is not classified globally and is unique to North Korea. It is a low-grade coal exclusively used in North Korea and is not found or used in any other country worldwide. This article compares North Korea's coal classification and the international coal classification of coal and provides insights into the geological characteristics, reserves, utilization, and research trends of North Korean coal resources. This study could serve as a guide for preparing scientific and industrial agendas related to coal collaboration between North Korea and South Korea.

GENERAL STRATIGRAPHY OF KOREA (한반도층서개요(韓半島層序槪要))

  • Chang, Ki Hong
    • Economic and Environmental Geology
    • /
    • v.8 no.2
    • /
    • pp.73-87
    • /
    • 1975
  • Regional unconformities have been used as boundaries of major stratigraphic units in Korea. The term "synthem" has already been propsed for formal unconformity-bounded stratigraphic units of maximum magnitude (ISSC, 1974). The unconformity-based classification of the strata in the cratonic area in Korea comprises in ascending order the Kyerim, $Sangw{\check{o}}n$, $Jos{\check{o}}n$, $Py{\check{o}}ngan$, Daedong, and $Ky{\check{o}}ngsang$ Synthems, and the Cenozoic Erathem. The unconformites separating them from each other are either orogenic or epeirogenic (and vertical tectonic). The sub-$Sangw{\check{o}}n$ unconformity is a non-conformity above the basement complex in Korea. The unconformities between the $Sangw{\check{o}}n$, $Jos{\check{o}}n$, and $Py{\check{o}}ngan$ Synthems are disconformities denoting late Precambrian and Paleozoic crustal quiescence in Korea. The unconformities between the $Py{\check{o}}ngan$, Daedong, and $Ky{\check{o}}ngsang$ Synthems are angular unconformities representing Mesozoic orogenies. The bounding unconformities of the $Ky{\check{o}}ngsang$ Synthem involve non-conformable parts overlying the Jurassic and late Cretaceous granitic rocks.

  • PDF