• 제목/요약/키워드: 사고 예측 모델

검색결과 332건 처리시간 0.028초

LSTM 기반 배수지 수위 변화 예측모델과 적합성 평가 연구 (A Study on LSTM-based water level prediction model and suitability evaluation)

  • 이은지;박형욱;김은주
    • 스마트미디어저널
    • /
    • 제11권5호
    • /
    • pp.56-62
    • /
    • 2022
  • 배수지는 정수처리 된 물을 급수하기 위해 정수물을 모아두는 저장소로서, 물의 수요량에 따라 급수량을 조절하여 안정적으로 물을 공급하기 위해 배수지의 수위 관리는 매우 중요하다. 현재 배수지 내에 수위 계측 센서를 설치하여, 가압장의 펌프운영을 통해 배수지의 최적 수위를 관리하고 있으나, 센서의 오작동 및 통신두절 등 사고대응을 관리자 감시에 의존하고 있어, 사고의 위험을 안고 있다. 본 연구에서는 배수시설의 안정적 운영을 위하여, 배수지의 수위 변화 예측 인공지능 모델을 제안하였으며, 배수지 수위 변화 예측모델의 현장적용에 대한 안정성을 확인하기 위하여 수위 데이터의 결측 상황에 대한 시뮬레이션을 통하여, 실제 수위 변화값과 예측된 수위 변화값의 비교를 통하여 모델의 유용성을 확인하였다.

DSNP 코드를 사용한 비보호 유량상실사고(ULOF) 모의

  • 권영민;한도희;석수동
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(1)
    • /
    • pp.738-744
    • /
    • 1998
  • 본 논문에서는 DSNP로 개발된 EBR-II 시뮬레이션 프로그램을 이용하여 SHRT-45실험을 모의해석하고 실험결과와 비교 분석하였다. ULOF 사고시 노심과 계통에서 발생하늘 주요 현상학적인 특성과 이를 모의하기 위한 해석모델에 대하여 논의하였다. 특허 일차원적인 DSNP 코드로써 원자로 풀 내부에서 소듐의 혼합 및 성층화 현상과 같은 다차원적인 거동을 모의하는 방법을 검토하였다. 원자로 풀에서의 혼합모델을 적절히 조정함으로써 DSNP 코드는 일반적으로 ULOF 과도거동을 잘 예측하였다. SHRT-45 모의해석 결과, ULOF 발생시 금속핵연료를 사용하는 EBR-II노심의 고유 안전성과 피동 붕괴열 제거능력이 입증되었으며 이는 실험결과와 일치하였다.

  • PDF

수량화 이론을 이용한 도시부 터널 내 교통사고 영향요인에 관한 연구 - 부산광역시를 중심으로 - (Study on Influencing Factors of Traffic Accidents in Urban Tunnel Using Quantification Theory (In Busan Metropolitan City))

  • 임창식;최양원
    • 대한토목학회논문집
    • /
    • 제35권1호
    • /
    • pp.173-185
    • /
    • 2015
  • 본 연구는 통계적 분석기법을 통하여 부산시내에서 운영 중인 11개 터널에서 발생한 교통사고 456건을 대상으로 교통사고의 발생특성, 유형화 및 예측모델을 구축하였는바 다음과 같은 결론을 얻게 되었다. 교통사고 발생특성으로는 시간대별 터널 내 교통사고 08~18시 사이가 전체의 64.9%를 차지하고 있어 기존 도로의 45.8~46.1%에 비해 높게 나타났고, 사고유형별로는 차대차 사고가 대부분을 차지하고 있으며, 차량단독사고는 기존도로에 비해 다소 높게 나타났으며, 연령층별로는 21~40세의 구성비가 높았고, 제1당사자 차종별로는 화물차의 비중이 높았고, 운량별로는 맑은 날을 제외하고 비가 오는 날이 흐린 날 보다 더욱 높은 수치를 보였다. 교통사고 영향요인에 대하여 주성분분석을 실시한 결과, 제1주성분은 도로, 터널구조 및 교통류 관련요인이, 제2주성분은 조명시설 및 도로구조 관련요인이, 제3주성분은 대기상태 및 조명시설 관련요인이, 제4주성분은 인적 및 시계열 관련요인이, 제5주성분은 인적요인이, 제6주성분은 차량적 요인과 교통류 관련 요인이, 제7주성분은 기상요인으로 대별되었다. 교통사고 발생지점에 대하여 유형화를 실시한 결과, 최적 집단수는 5개로 구분지어 졌으며, 집단별로 수량화이론 1류를 적용하여 분석한 결과, 제1집단은 예측모델의 설명력이 낮은 반면 제4집단은 예측모델의 설명력이 중간정도, 제2, 제3, 제5집단은 높은 설명력을 가진 예측모델이 구축되었다. 예측모델의 편상관계수 절대 값이 0.2(약한 상관) 이상인 항목(주성분) 중에서 도로환경적 요인이 포함된 변수를 체크하여 분석한 결과, 주요 검토항목은 적절한 교통류 처리, 횡단구성(차로폭), 터널구조(터널길이), 도로선형, 환기시설, 조명시설로 요약되었다.

머신러닝 기반의 자동차보험 사고 환자의 진료 기간 예측 기술 (Machine Learning-Based Prediction Technology for Medical Treatment Period of Automobile Insurance Accident Patients)

  • 변경근;이덕규;이형동
    • 융합보안논문지
    • /
    • 제23권1호
    • /
    • pp.89-95
    • /
    • 2023
  • 자동차보험 사고 환자의 진료비 감소를 위한 대책 마련에 도움을 주기 위해 본 연구에서는 자동차보험 사고 40대~50대 경상 환자들의 진료비에 가장 핵심 요소인 진료 기간을 예측하고 진료 기간에 영향을 미치는 요인을 분석하였다. 이를 위해 Decision Tree 등 5개 알고리즘을 활용한 머신러닝 모델을 생성하고 모델간에 그 성능을 비교·분석하였다. 진료 기간 예측에 정밀도, 재현율, FI 점수 등 3가지 평가 지표에서 좋은 성능을 나타낸 알고리즘은 Decision Tree, Gradient Boosting 및 XGBoost 등 3가지였다. 그리고 진료 기간 예측에 영향을 미치는 요인 분석 결과, 병원의 종류, 진료 지역, 나이, 성별 등으로 나타났다. 본 연구를 통해 AutoML을 활용한 손쉬운 연구 방법을 제시하였으며, 본 연구 결과가 자동차보험 사고 진료비 경감을 위한 정책에 도움이 되기를 기대한다.

해상누유의 초기확산 예측모델 및 수치추정 (Prediction Model and Numerical Simulation of the Initial Diffusion of Spilled Oil on the Sea Surface)

  • 윤범상;송지운
    • 대한조선학회논문집
    • /
    • 제34권2호
    • /
    • pp.104-110
    • /
    • 1997
  • 연안해역에서의 해상 운송량이 늘어남과 함께 유조선의 충돌 및 좌초 등의 해난사고에 의해 해양환경에 막대한 피해를 끼치는 원유 유출사고도 대폭 증가하고 있다. 누유의 효율적인 수거와 환경피해를 최소화 하기 위해서는 oil map 즉, 누유오염지역의 시간영역에서 정확한 예측이 매우 중요하다. 이러한 예측은 정수면위 누유의 초기확산과 조류, 바람 파도에 기인한 표층류에 의한 이동이라는 중요한 두가지 과정을 고려하여 이루어진다. 본 논문에서는 초기확산만을 고려하였다. 누유의 초기확산 추정을 위해 새로운 수치모델과 기법이 제안되었다. 본 모델의 타당성을 검증하기 위해 간단한 실험이 이루어졌다. 또한, 가상누유사고에 대해 수치 시뮬레이션을 수행하였는데 본 모델로 부터 기름층두께를 포함하는 매우 현실적인 oil map을 얻을 수 있었다.

  • PDF

해양사고 예보 시스템 개발(I): 해양사고 수량화 D/B 구축 (Development of Marine Casualty Forecasting System (I): Marine Casualty Numerical D/B Construction)

  • 임정빈;허용범;김창경
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2003년도 춘계공동학술대회논문집
    • /
    • pp.51-59
    • /
    • 2003
  • 해양사고 예보 시스템(MCFS)은 해양사고의 예측건수와 위험수준을 일기예보와 같이 방송하기 위한 것이다. MCFS는 해양사고 수량화 D/B, 예측 모델, 3차원 통계 가시화 시스템 등으로 구성되어 있다. 이 논문에서는 수량화 D/B의 구현 절차를 기술했다. 해양사고 데이터는 1990년부터 2000년까지 11년간 위도 33$^{\circ}$N~35$^{\circ}$N와 경도124$^{\circ}$E~127$^{\circ}$E의 대한민국 서남해안 일대에서 발생한 총 724건을 수집하였다. 수량화 D/B의 분석방법을 제안하고 그 유효성을 검토하였다.

  • PDF

상수관로 위험도 예측을 위한 평가 지표 개발 (Development of Risk Prediction Index in Water Distribution System)

  • 최예지;정한나;장동우
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.402-402
    • /
    • 2023
  • 상수관망은 충분한 양질의 수돗물을 공급하기 위한 사회기반 시설물이다. 상수관로의 노후화, 누수 등은 수도 사고 발생의 가능성을 증가시키고, 수돗물 안전성에 대한 신뢰도를 감소시킨다. 수돗물 공급 전 과정을 인공지능(AI), 정보통신기술(ICT)과 결합한 지능형 상수도관 예측 및 관리 시스템을 구축하여, 상수도 수질 사고를 조기에 감지하고 사전에 취약지점을 예측할 필요가 있다. 이를 위해서는 상수관로의 위험도를 평가하기 위한 체계적인 데이터와 기준이 필요하다. 본 연구에서는 상수관로의 위험도 예측모델을 개발하기 위해 상수관로 위험도와 관련된 평가 인자를 선정하고 분류하였으며, 각 인자의 명확한 기준을 제시하였다. 국내·외 상수도 위험도 평가 항목에 대한 자료를 비교 및 분석하였고, 전문가 자문을 통해 인자를 정립하여 상수관로 위험도 평가 지표를 개발하였다. 개발된 평가 지표의 현장 적용성과 실효성 검증을 위해 정량적인 데이터 확보가 가능하고 상태를 평가할 수 있는 대상 지역을 선정하였다. 문헌 자료의 평가항목들과 전문가 의견을 바탕으로 상수관로 위험도 평가 인자를 31개의 직접 인자와 5개의 간접 인자로 구분하였고, 인자별 평가 기준을 제시하였다. 직접 인자는 노후화 정도를 파악할 수 있는 노후도 평가 항목, 지역 특성을 반영한 토양 부식성 항목, 실시간으로 측정하여 결과를 제공하는 실시간 계측 항목, 직접적인 수질 결과를 제공하는 정수장 수질 항목, 상수관로의 건전성을 평가하는 자산관리 항목으로 분류하였다. 추후, 위험도 평가 운용을 위한 알고리즘을 개발하면 상수도 사고 위험에 대한 예방 및 대응 전략을 수립할 수 있을 것으로 기대된다.

  • PDF

화학공장의 염소 누출에 의한 피해 영향 모델링 (Damage Effects Modeling by Chlorine Leaks of Chemical Plants)

  • 정경삼;백은선
    • 한국화재소방학회논문지
    • /
    • 제32권3호
    • /
    • pp.76-87
    • /
    • 2018
  • 본 연구는 화학공장에서 원료 및 중간재로 많이 사용되는 Heavy Gas인 염소를 화학설비의 가압 염소포화액체 저장탱크에서 2상 흐름 연속누출에 대한 유해위험거리를 정량적으로 예측하기 위한 피해영향 모델링이다. 피해예측을 위한 평가방법과 사고영향평가모델들을 기준으로 액체염소 저장용기의 누출사고에서 사고결과에 미치는 최적의 변수를 나타나기 위해 조업조건을 표준조건으로 하였다. 장외영향평가의 위험성 평가에 사용되는 것으로 USEPA와 NOAA에서 공동 개발된 대기확산 모델인 ALOHA (V5.4.4) 모델을 사용하였다. 화학물질을 대량으로 제조 및 취급하고 있는 여수 국가산업단지를 연구 대상지역으로하여, 기상변수와 공정변수들을 설정하여 시나리오별로 모델링을 하여 누출사고에 대한 특성을 도출하였다. 가우시안 확산모델에 따른 관심지점의 농도 추정치를 산출하였고, ALOHA 모델링 결과 염소 확산에 의한 유해위험거리는 대기온도가 높고 풍속의 감소와 대기 안정도가 안정할수록 증가 하는 것으로 분석되었다.

빅데이터를 활용한 AI 기반 우선점검 대상현장 선정 모델 (AI-based Construction Site Prioritization for Safety Inspection Using Big Data)

  • 황윤호;지석호;이현승;정현준
    • 대한토목학회논문집
    • /
    • 제42권6호
    • /
    • pp.843-852
    • /
    • 2022
  • 지속적인 안전관리에도 불구하고 매년 건설업 근로자 사망율은 줄어들지 않는 추세다. 이에 따라 건설현장 사고를 예방하기 위한 다양한 연구가 진행 중이다. 본 논문에서는 건설공사 비용 50억원 미만의 건설현장 중 건설사고가 발생할 것으로 예상되는 현장을 우선적으로 선별하는 AI기반 우선점검대상 선정 모델을 개발하였다. 특히, 적용한 AI 알고리즘 중 분류분석에서 가장 뛰어난 성능(사고발생예측 AUC-ROC 90.48 %)을 보인 랜덤 포레스트를 모델 개발에 활용하였으며, 건설사고를 유발하는 주요한 요인으로는 공사비, 총공사일수, 공사실적평가액이 확인되었다. 본 연구를 통해 점검인력 효율화와 건설사고에 대한 선제적 대응의 결과로 8년간 약 917.7 % ROI(투자수익률)를 기대할 수 있다.

유출유 확산 예측 모델의 상시 운용 체계 개발에 관한 연구 (A Study on Development of Operational System for Oil Spill Prediction Model)

  • 김혜진;이문진;오세웅;강준묵
    • 해양환경안전학회지
    • /
    • 제17권4호
    • /
    • pp.375-382
    • /
    • 2011
  • 기초자료의 획득 체계 및 가공 체계의 부재와 복잡한 사용자 입력 체계로 인해서 유출유 확산 예측 모델의 활용에 제약이 따른다. 이러한 상황에서 유류오염사고에 신속하게 대응하기 위한 과학적 방제 전략 수립은 어렵다. 본 연구에서는 현재 실정을 고려하여 유출유 확산 예측 모델 구동을 위한 최선의 상시 활용 체계를 수립하였다. 모든 기초자료를 직접 구축하고 관리하는 것이 불가능하기 때문에 외부 기관의 실시간 동적 자료를 연계하고 최소한의 데이터베이스만을 직접 구축하여 실시간 유출유 확산 예측의 상시 활용이 가능함을 확인하였다. 또한 사용자와 모델간 인터페이스부분에서 발생하는 오류를 최소화하는 사용자 입력 인터페이스와 모델 연산 결과를 시공간 측면에서 다차원적으로 분석할 수 있는 결과 표출 인터페이스를 제안하였다. 본 연구 결과로 구축된 유출유 확산 예측 모델의 상시 운용 체계는 외부 자료에 의존하기 때문에 모델 결과의 불확실성이 존재하지만, 유류오염사고 발생시 신속하게 모델을 구동하여 유출유 확산 예측을 수행할 수 있다는 측면에서 실제 방제 현장에서 의미있게 활용될 수 있다.