• Title/Summary/Keyword: 사격 표적지

Search Result 19, Processing Time 0.032 seconds

Tactical Fire Direction Automation for Command and Control of Artilliary Battalion Unit (대대급 화력(포병 부대)의 지휘통제(C2)를 위한 전술적 사격지휘 자동화 절차)

  • Ahn, Myong-Hwan;Ji, Jae-Kyung;Cho, Hyun-Ho;Sin, Chul-Soo;Park, Young-Woo;Lee, Teuc-Soo;Kim, Tae-Yeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.11B
    • /
    • pp.1738-1747
    • /
    • 2010
  • This report shows the analysis and design of tactical decision automation procedure and the result of core algorithm. Expecially scheme of analysis and design includes result of tactical decision supporting procedure analysis for target engagement to fire in refer to AFATDS. Tactical decision automation procedure has three phases like target analysis, target priority, fire unit decision, fire method and attack method. Target analysis creates base information to decide priorities and attack methods through target activity, size and protection status. Target priority and fire unit decision judge target priority and fire unit with unit status and operation mission basis of target priority. Fire unit and Attack method decide fire style according to the kind of fire and ammunition for effective firing achievement. Finally, we show the effective tactical decision automation procedure through making the algorithm of priority and air control.

Extracting the Point of Impact from Simulated Shooting Target based on Image Processing (영상처리 기반 모의 사격 표적지 탄착점 추출)

  • Lee, Tae-Guk;Lim, Chang-Gyoon;Kim, Kang-Chul;Kim, Young-Min
    • Journal of Internet Computing and Services
    • /
    • v.11 no.1
    • /
    • pp.117-128
    • /
    • 2010
  • There are many researches related to a simulated shooting training system for replacing the real military and police shooting training. In this paper, we propose the point of impact from a simulated shooting target based on image processing instead of using a sensor based approach. The point of impact is extracted by analyzing the image extracted from the camera on the muzzle of a gun. The final shooting result is calculated by mapping the target and the coordinates of the point of impact. The recognition system is divided into recognizing the projection zone, extracting the point of impact on the projection zone, and calculating the shooting result from the point of impact. We find the vertices of the projection zone after converting the captured image to the binary image and extract the point of impact in it. We present the extracting process step by step and provide experiments to validate the results. The experiments show that exact vertices of the projection area and the point of impact are found and a conversion result for the final result is shown on the interface.

Design of Ballistic Calculation Model for Improving Accuracy of Naval Gun Firing based on Deep Learning

  • Oh, Moon-Tak
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.12
    • /
    • pp.11-18
    • /
    • 2021
  • This paper shows the applicability of deep learning algorithm in predicting target position and getting correction value of impact point in order to improve the accuracy of naval gun firing. Predicting target position, the proposed model using LSTM model and RN structure is expected to be more accurate than existing method using kalman filter. Getting correction value of impact point, the another proposed model suggests a reinforcement model that manages factors which is related in ballistic calculation as data set, and learns using the data set. The model is expected to reduce error of naval gun firing. Combining two models, a ballistic calculation model for improving accuracy of naval gun firing based on deep learning algorithm was designed.

The study on target tracking filter using interacting multiple model for tracking maneuvering target (기동표적 추적을 위한 상호작용다수모델 추적필터에 관한 연구)

  • Kim, Seung-Woo
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.137-144
    • /
    • 2007
  • Fire Control System(FCS) errors can be classified as hardware errors and software errors, and one of the software errors is from target tracking filter which estimates target's location, velocity, acceleration, and so on. It affects function of ballistic calculation equipment significantly. For gun to form predicted hitting point accurately and enhance hitting rate, we need status information of target's future location. Target tracking filter algorithms consist of Single Singer Model, Fixed Gain filter algorithm, IMM, PBIMM and so on. This paper will design IMM tracking filer, which is going to be! applied to domestic warship. Target tracking filter using CV model, Song model and CRT model for IMM tracking filter is made, and tracking ability is analyzed through Monte-Carlo simulation.

  • PDF

Development of Fire Control System with an Analysis of Impact Vibration and Impact Energy (충격체의 진동 및 충격량 분석을 이용한 사격 통제장비 개발)

  • Lee, Dong-Hee;Lee, Jong-Heon;Youn, Ju-Houc;Park, Noh-Sik
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.58-63
    • /
    • 2011
  • This paper presents a development of a fire control system with an intelligent judgment algorithm of hit or not. The presented algorithm analyzes an impact energy and impact signals according to impact materials. And the detected signals are used to judge the correct hit or not. Furthermore, Zigbee wireless communication technology is applied in the developed fire control system. The wireless communication technology can supply a simple installation of the practical system and free from ageing of communication wire. The presented system is verified in the practical fire test, and the results show the effectiveness of the development system.

Development of a Shooting Training System using an Accelerometer (가속도 센서를 이용한 사격 훈련 시스템 개발)

  • Joo, Hyo-Sung;Woo, Min-Jung;Woo, Ji-Hwan
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.7
    • /
    • pp.263-271
    • /
    • 2021
  • Optoelectronic shooting training systems are used in shooting training sites to improve the accuracy of shooting by tracking the trajectories of gun movements. However, optoelectronic-based systems have limitations in terms of cost, complexity of installation, and the risk that electronic targets may be broken. In this study, we developed and verified a shooting training system that measures postural tremors using a low-cost accelerometer. The acceleration sensor module was designed to be attached to the air cylinder of a gun. Postural tremors were evaluated based on amplitude, frequency, and spatial pattern index, which were computed using acceleration data. The postural tremor indices between the accelerometer and optoelectronic-based system were highly correlated (left-right and up-down directions: r = 0.76 and r = 0.70, respectively). We validated the developed shooting training system using an independent two-sample t-test, which identified a significant difference (p < 0.05) in the calculated postural tremor index according to the athlete's shooting score (i.e., best and worst shots).

A Weapon Assignment Algorithm for Rapid Reaction in Multi-Target and Multi-Weapon Environments (다표적-다무장 환경에서 신속 대응을 위한 무장 할당 알고리즘)

  • Yoon, Moonhyung
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.8
    • /
    • pp.118-126
    • /
    • 2018
  • In order to dominate the multiple-targets of high threat in the initial stage of combat, it is necessary to maximize the combat effect by rapidly firing as many weapons as possible within a short time. Therefore, it is mandatory to establish the effective weapon allocation and utilize them for the combat. In this paper, we propose a weapon assignment algorithm for rapid reaction in multi-target and multi-weapon environments. The proposed algorithm maximizes the combat effect by establishing the fire plan that enables the rapid action with the operation of low complexity. To show the superiority of our algorithm, we implement the evaluation and verification of performances through the simulation and visualization of our algorithm. Our experimental results show that the proposed algorithm perform the effective weapon assignment, which shows the high target assignment rate within the fast hour even under the large-scale battle environments. Therefore, our proposed scheme are expected to be highly useful when it is applied to real weapon systems.

Development of Low-Cost Automatic Flight Control System for an Unmanned Target Drone (무인표적기용 저가형 자동비행시스템 개발)

  • Lee, Jang-Ho;Ryu, Hyeok;Kim, Jae-Eun;Ahn, Iee-Ki
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.1
    • /
    • pp.19-26
    • /
    • 2004
  • This paper deals with the automatic flight control system for an unmanned target drone which is operated by an army as an anti-air gun shooting training. By automation of unmanned target drone that is manually operated by external pilot, pilot can reduce workload and an army can reduce the budget. Most UAVs which are developed until today use high-cost sensors as AHRS and IMU to measure the attitude, but those are contradictory for the reduction of budget. This paper says the development of low-cost automatic flight control system which makes possible of automatic flight with low-cost sensors. We have developed the integrated automatic flight control system by integrating electricity module, switching module, monitoring module and RC receiver as an one module. We also prove the performance of automatic flight control system by flight test.

  • PDF

A Threat Assessment Algorithm for Multiple Ground Targets (다수의 대지표적을 위한 위협 평가 알고리즘)

  • Yoon, Moonhyung;Park, Junho;Yi, JeongHoon
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.7
    • /
    • pp.590-599
    • /
    • 2018
  • As a basic information to implement the fire plan that dominates multiple targets effectively under the battle environment with limited resources, such a process is mandatory that gives a priority order to a target with the high level of threat by quantitatively computing the threat level of an individual target through the analysis on the target. However, the study has still remained in the initial level on an evaluation algorithm for the threat level of the ground target. Considering this fact, the present paper proposes the evaluation algorithm for the threat by multiple ground targets. The proposed algorithm has a core point to consider the type of target and protected asset to implement the computation of proximity; set the additional value based on the weights indicating the significance of weapon and protected asset; and compute the threat level of a target that considers the characteristics of the target. The evaluation and verification of performances have been implemented through the simulation and visualization of an algorithm proposed in the present paper. From the performance result, as the proposed algorithm has been able to perform effectively the threat assessment according to the weights indicating the significance of weapons and protected assets under diverse environments where weapons and protected assets are located, high utility and effect are expected when applied to an actual ground weapon system.

Gun fire Control System Design with Maneuvering Target State Estimates (기동표적의 상태추정을 이용한 포의 사격통제 시스템 향상 연구)

  • Lee, Dong-Gwan;Song, Taek-Lyul;Han, Du-Hee
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.3
    • /
    • pp.98-109
    • /
    • 2006
  • Fire control system(FCS) errors can be classified as hardware errors, filter prediction errors, effective ballistic function errors, and aiming errors. Among these errors, the filter prediction errors are the most significant error sources. To reduce them, a target future position calculation method using the acceleration estimate is suggested and it is compared with the constant velocity target prediction method. Simulation results show that the suggested method has better performance than the constant velocity prediction method. Target tracking algorithm is established with multiple target tracking filters based on IMM structure.